The Magazine

The Magazine

👩‍💻 Welcome to OPIT’s blog! You will find relevant news on the education and computer science industry.

DBMS Architecture: A Comprehensive Guide to Database System Concepts
Avatar
John Loewen
June 30, 2023

Today’s tech-driven world is governed by data – so much so that nearly 98% of all organizations are increasing investment in data.


However, company owners can’t put their feet up after improving their data capabilities. They also need a database management system (DBMS) – a program specifically designed for storing and organizing information efficiently.


When analyzing a DBMS, you need to be thorough like a detective investigating a crime. One of the elements you want to consider is DBMS architecture. It describes the structure of your database and how individual bits of information are related to each other. The importance of DBMS architecture is enormous, as it helps IT experts design and maintain fully functional databases.


But what exactly does a DBMS architecture involve? You’ll find out in this entry. Coming up is an in-depth discussion of database system concepts and architecture.


Overview of DBMS Architecture


Suppose you’re assembling your PC. You can opt for several configurations, such as those with three RAM slots and dual-fan coolers. The same principle applies to DBMS architectures.


Two of the most common architectures are three-level and two-level architectures.


Three-Level Architecture


Three-level architecture is like teacher-parent communication. More often than not, a teacher communicates with parents through children, asking them to convey certain information. In other words, there are layers between the two that don’t allow direct communication.


The same holds for three-level architecture. But instead of just one layer, there are two layers between the database and user: application client and application server.


And as the name suggests, a three-level DBMS architecture has three levels:


  • External level – Also known as the view level, this section concerns the part of your database that’s relevant to the user. Everything else is hidden.
  • Conceptual level – Put yourself in the position of a scuba diver exploring the ocean layer by layer. Once you reach the external level, you go one segment lower and find the conceptual level. It describes information conceptually and tells you how data segments interact with one another.
  • Internal level – Another name for the internal level is the physical level. But what does it deal with? It mainly focuses on how data is stored in your system (e.g., using folders and files).

Two-Level Architecture


When you insert a USB into your PC, you can see the information on your interface. However, the source of the data is on the USB, meaning they’re separated.


Two-level architecture takes the same approach to separating data interface and data structure. Here are the two levels in this DBMS architecture:


  • User level – Any application and interface in your database are stored on the user level in a two-level DBMS architecture.
  • System level – The system level (aka server level) performs transaction management and other essential processes.

Comparison of the Two Architectures


Determining which architecture works best for your database is like buying a car. You need to consider how easy it is to use and the level of performance you can expect.


On the one hand, the biggest advantage of two-level architectures is that they’re relatively easy to set up. There’s just one layer between the database and the user, resulting in easier database management.


On the other hand, developing a three-level DBMS architecture may take a while since you need to include two layers between the database and the user. That said, three-level architectures are normally superior to two-level architectures due to higher flexibility and the ability to incorporate information from various sources.



Components of DBMS Architecture


You’ve scratched the surface of database system concepts and architecture, but don’t stop there. It’s time to move on to the basics to the most important elements of a DBMS architecture:


Data Storage


The fact that DBMS architectures have data storage solutions is carved in stone. What exactly are those solutions? The most common ones are as follows:


  • Data files – How many files do you have on your PC? If it’s a lot, you’re doing exactly what administrators of DBMS architectures are doing. A large number of them store data in files, and each file is categorized into blocks.
  • Indexes – You want your database operations to be like lightning bolts, i.e. super-fast. You can incorporate indexes to accomplish this goal. They point to data columns for quick retrieval.
  • Data dictionary – Also known as system logs, data dictionaries contain metadata – information about your data.

Data Manipulation


A large number of companies still utilize manual data management methods. But using this format is like shooting yourself in the foot when there are advanced data manipulation methods are available. These allow you to process and retrieve data within seconds through different techniques:


  • Query processor – Query processing refers to extracting data from your DBMS architecture. It operates like any other multi-stage process. It involves parsing, translation, optimization, and evaluation.
  • Query optimizer – A DBMS architecture administrator can perform various query optimization tasks to achieve desired results faster.
  • Execution engine – Whenever you want your architecture to do something, you send requests. But something needs to process the requests – that something is the execution engine.

Data Control


We’re continuing our journey through an average DBMS architecture. Our next stop is data control, which is comprised of these key elements:


  • Transaction management – When carrying out multiple transactions, how does the system prioritize one over another? The answer lies in transaction management, which is also about processing multiple transactions side by side.
  • Concurrency control – Database architecture is like an ocean teeming with life. Countless operations take place simultaneously. As a result, the system needs concurrency control to manage these concurrent tasks.
  • Recovery management – What if your DBMS architecture fails? Do you give up on your project? No – the system has robust recovery management tools to retrieve your information and reduce downtime.

Database System Concepts


To give you a better understanding of a DBMS architecture, let’s describe the most important concepts regarding this topic.


Data Models


Data models do to information what your folders do to files – organize them. There are four major types of data models:


  • Hierarchical model – Top-down and bottom-up storage solutions are known as hierarchical models. They’re characterized by tree-like structures.
  • Network model – Hierarchical models are generally used for basic data relationships. If you want to analyze complex relationships, you need to kick things up a notch with network models. They enable you to represent huge quantities of complex information without a hitch.
  • Relational model – Relations are merely tables with values. A relational model is a collection of these relations, indicating how data is connected to other data.
  • Object-oriented model – Programming languages regularly use objects. An object-oriented model stores information as models and is usually more complex than other models.

Database Schema and Instances


Another concept you should familiarize yourself with is schemas and instances.


  • Definition of schema and instance – Schemas are like summaries, providing a basic description of databases. Instances tell you what information is stored in a database.
  • Importance of schema in DBMS architecture – Schemas are essential because they help organize data by providing a clear outline.

Data Independence


The ability of other pieces of information to remain unaffected after you change one bit of data is known as data independence. What are the different types of data independence, and what makes them so important?


  • Logical data independence – If you can modify logical schemas without altering the rest of the system, your logical data is independent.
  • Physical data independence – Physical data is independent if it remains unaffected when changing your hardware, such as SSD disks.
  • Significance of data independence in DBMS architecture – Independent data is crucial for saving time in database management because it reduces the amount of information that needs to be processed.

Efficient Database Management Systems


Database management systems have a lot in common with other tech-based systems. For example, you won’t ignore problems that arise on your PC, be they CPU or graphics card issues. You’ll take action to optimize the performance of the device and solve those issues.


That’s exactly what 75% of developers and administrators of database management systems do. They go the extra mile to enhance the performance, scalability, flexibility, security, and integrity of their architecture.


Performance Optimization Techniques


  • Indexing – By pointing to certain data in tables, indexes speed up database management.
  • Query optimization – This process is about finding the most efficient method of executing queries.
  • Caching – Frequently accessed information is cached to accelerate retrieval.

Scalability and Flexibility


  • Horizontal scaling – Horizontal scaling involves increasing the number of servers.
  • Vertical scaling – An administrator can boost the performance of the server to make the system more scalable.
  • Distributed databases – Databases are like smartphones in that they can easily overload. Pressure can be alleviated with distributed databases, which store information in multiple locations.

Security and Integrity


  • Access control – Restricting access is key to preventing cyber security attacks.
  • Data encryption – Administrators often encrypt their DBMS architecture to protect sensitive information.
  • Backup and recovery – A robust backup plan helps IT experts recover from shutdowns and other unforeseen problems.

Preparing for the Future Is Critical


DBMS architecture is the underlying structure of a database management system. It consists of several elements, all of which work together to create a fully functional data infrastructure.


Understanding the basic elements of DBMS architecture is vital for IT professionals who want to be well-prepared for future changes, such as hybrid environments. As the old saying goes – success depends upon preparation.

Read the article
Top Programs Ranked in Masters in Artificial Intelligence Online
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
June 30, 2023

You may have heard the catchy phrase “data is the new oil” floating around. The implication is that data in the 21st century is what oil was in the 20th – the biggest industry around. And it’s true, as the sheer amount of data each person generates when they use the web, try out an app, or even buy from a store is digital “oil” for the companies collecting that data.


It’s also the fuel that powers the current (and growing) wave of artificial intelligence (AI) tools emerging in the market. From ChatGPT to the wave of text-to-speech tech flooding the market, everything hinges on information, and people who can harness that data through algorithms and machine learning practices are in high demand.


That’s where you can come in. By taking a Master’s degree in artificial intelligence online, you position yourself as one of the people who can help the new “digital oil” barons capitalize on their finds.


Factors to Consider When Choosing an Online AI Master’s Program


When choosing an artificial intelligence online Master’s, you have to consider more than the simple accessibility the course offers. These factors help you to weed out the also-ran programs from the ones that help you to advance your career:


  • Accreditation – Checks for accreditation come in two flavors. First, you need to check the program provider’s credentials to ensure the degree you get from your studies is worth the paper on which it’s printed. Second, you have to confirm the accreditation you receive is something that employers actually want to see.
  • Curriculum – What does your artificial intelligence online Master degree actually teach you? Answer that question and you can determine if the program serves the career goals you’ve set for yourself.
  • Faculty Expertise – On the ground level, you want tutors with plenty of teaching experience and their own degrees in AI-related subjects. But dig beyond that to also discover if they have direct experience working with AI in industry.
  • Program Format – A self-study artificial intelligence Master’s program’s online nature means they offer some degree of flexibility. But the course format plays a role in your decision, given that some rely solely on self-learning whereas others include examinations and live remote lectures.
  • Tuition and Financial Aid – A Master’s degree costs quite a bit depending on area (prices range from €1,000 to €20,000 per year), so you need to be in the appropriate financial position. Many universities offer financial aid, such as scholarships, grants, and payment programs, that may help here.
  • Career Support – You’re likely not studying for Master of artificial intelligence online for the joy of having a piece of paper on your wall. You want to build a career. Look for institutions that have strong alumni networks, connections within industry, and dedicated careers offices or services.

Top Online AI Master’s Programs Ranked


In choosing the best Master’s in artificial intelligence online programs, we looked at the above factors in addition to the key features of each program. That examination results in three online courses, each offering something a little different, that give you a solid grounding in AI.


Master in Applied Data Science & AI (OPIT)


Flexibility is the name of the game with OPIT’s program, as it’s fully remote and you get a choice between an 18-month course and a fast-tracked 12-month variant. The latter contains the same content as the former, with the student simply dedicating themselves to more intensive course requirements.


The program comes from an online institution that is accredited under both the Malta Qualification Framework and European Qualification Framework. As for the course itself, it’s the focus on real-life challenges in data science and AI that makes it so attractive. You don’t just learn theory. You discover how to apply that theory to the practical problems you’ll face when you enter the workforce.


OPIT has an admissions team who’ll guide you through getting onto the course, though you’ll need a BSc degree (in any field) and the equivalent of B2-level English proficiency to apply. If English isn’t your strong suit, OPIT also offers an in-house certification that you can take to get on the course. Financial aid is available through scholarships and funding, which you may need given that the program can cost up to €6,500, though discounts are available for those who apply early.



Master in Big Data, Artificial Intelligence, and Disruptive Technologies (Digital Age University)


If data is the new oil, Digital Age University’s program teaches you how to harness that oil and pump it in a way that makes you an attractive proposition for any employer. Key areas of study include the concept and utilization of Big Data (data analytics plays a huge role here), as well as the Python programming skills needed to create AI tools. You’ll learn more about machine learning models and get to grips with how AI is the big disruptor in modern business.


Tuition costs are reasonable, too, with this one-year course only costing €2,600. Digital Age University runs a tuition installment plan that lets you spread your costs out without worrying about being charged interest. Plus, your previous credentials may put you in line for a grant or scholarship that covers at least part of the cost. All first-year students are eligible for the 10% merit-based scholarship again, dependent on prior education). There’s also a 20% Global Scholarship available to students from Asia, Africa, the Middle East, and Latin American countries.


Speaking of credentials, you can showcase yours via the online application process or by scheduling a one-on-one call with one of the institution’s professors. The latter option is great if you’re conducting research and want to get a taste of what the faculty has to offer.


Master in Artificial Intelligence (Three Points Digital Business School)


Three Points Digital Business School sets its stall out early by pointing out that 83% of companies say they’ll create new jobs due to AI in the coming years. That’s its way of telling you that its business-focused AI course is the right choice for getting one of those jobs. After teaching the fundamentals of AI, the course moves into showing you how to create AI and machine learning models and, crucially, how to apply those models in practical settings. By the end, you’ll know how to program chatbots, virtual assistants, and similar AI-driven tools.


It’s the most expensive program on this list, clocking in at €7,500 for a one-year course that delivers 60 ECTS credits. However, it’s a course targeted at mature students (half of the current students are 40 years old), and it’s very much career-minded. That’s exemplified by Three Points’ annual ThinkDigital Summit, which puts some of the leading minds in AI and digital innovation in front of students.


Admission is tougher than for many other Master’s in artificial intelligence online programs as you go through an interview process in addition to submitting qualifications. Every candidate is manually assessed via committee, with your experience and business know-how playing as much of a role as any technical qualifications you have.


Tips for Success in an Online AI Master’s Program


Let’s assume you’ve successfully applied to an artificial intelligence online Master’s program. That’s the first step in a long, often complex, journey. Here are some tips to keep in mind and set up for the future:


  • Manage your time properly by scheduling your study, especially given that online courses rely on students having the discipline needed for self-learning.
  • Build relationships with faculty and peers who may be able to connect you to job opportunities or have ideas for starting their own businesses.
  • Stay up-to-date on what’s happening with AI because this high-paced industry can leave people who assume what they know is enough behind.
  • Pursue real-world experience wherever you can, both through the practical assessments a program offers and internship programs that you can add to your CV.

Career Opportunities With a Master’s in Artificial Intelligence


You need to know what sorts of roles are available on the digital “oil rigs” of today and the future. Those who have an artificial intelligence online Master degree take roles as varied as data analyst, software engineer, data scientist, and research scientist.


Better yet, those roles are spread across almost all industries. Grand View Research tells us that we can expect the AI market to enjoy a 37.3% compound annual growth rate between 2023 and 2030, with that growth making AI-based roles available on a near-constant basis. Salary expectations are likely to increase along with that growth, with the current average of around €91,000 for an artificial intelligence engineer (figures based on Germany’s job market) likely to be a baseline for future growth.



Find the Right Artificial Intelligence Master’s Programs Online


We’ve highlighted three online Master’s programs with a focus on AI in this article, each offering something different. OPIT’s course leans heavily into data science, giving you a specialization to go along with the foundational knowledge you’ll gain. Digital Age University’s program places more of a focus on Big Data, with Three Points Digital Business School living up to its name by taking a more business-oriented approach.


Whatever program you choose (and it could be one other than the three listed here), you must research the course based on the factors like credentials, course content, and quality of the faculty. Put plenty of time into this research process and you’re sure to find a program that aligns with your goals.

Read the article
Masters in Machine Learning Online: The Top MSc Programs
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
June 30, 2023

Machines that can learn on their own have been a sci-fi dream for decades. Lately, that dream seems to be coming true thanks to advances in AI, machine learning, deep learning, and other cutting-edge technologies.


Have you used Google’s search engine recently or admired the capabilities of ChatGPT? That means you’ve seen machine learning in action. Besides those renowned apps, the technology is widespread across many industries, so much so that machine learning experts are in increasingly high demand worldwide.


Chances are there’s never been a better time to get involved in the IT industry than today. This is especially true if you enter the market as a machine learning specialist. Fortunately, getting proficient in this field no longer requires enlisting in a college – now you can finish a Master in machine learning online.


Let’s look at the best online Masters in machine learning and data science that you can start from the comfort of your home.


Top MSc Programs in Machine Learning Online


Finding the best MSc machine learning online programs required us to apply certain strict criteria in the search process. The following is a list of programs that passed our research with flying colors. But first, here’s what we looked for in machine learning MSc courses.


Our Criteria


The criteria we applied include:


  • The quality and reputation of the institution providing the course
  • International degree recognition
  • Program structure and curriculum
  • Duration
  • Pricing

Luckily, numerous world-class universities and organizations have a machine learning MSc online. Their degrees are accepted around the world, and their curricula count among the finest in the market. Take a look at our selection.



Imperial College London – Machine Learning and Data Science


The Machine Learning and Data Science postgraduate program from the Imperial College in London provides comprehensive courses on models applicable to real-life scenarios. The program features hands-on projects and lessons in deep learning, data processing, analytics, and machine learning ethics.


The complete program is online-based and relies mostly on independent study. The curriculum consists of 13 modules. With a part-time commitment, this program will last for two years. The fee is the same for domestic and overseas students: ÂŁ16,200


European School of Data Science & Technology – MSc Artificial Intelligence and Machine Learning


If you need a Master’s program that combines the best of AI and machine learning, the European School of Data Science & Technology has an excellent offer. The MSc Artificial Intelligence and Machine Learning program provides a sound foundation of the essential concepts in both disciplines.


During the courses, you’ll examine the details of reinforcement learning, search algorithms, optimization, clustering, and more. You’ll also get the opportunity to work with machine learning in the R language environment.


The program lasts for 18 months and is entirely online. Applicants must cover a registration fee of €1500 plus monthly fees of €490.


European University Cyprus – Artificial Intelligence Master


The European University in Cyprus is an award-winning institution that excels in student services and engagement, as well as online learning. The Artificial Intelligence Master program from this university treats artificial intelligence in a broader sense. However, machine learning is a considerable part of the curriculum, being taught alongside NLP, robotics, and big data.


The official site of the European University Cyprus states the price for all computer science Master’s degrees at €8,460. However, it’s worth noting that there’s a program for financial support and scholarships. The duration of the program is 18 months, after which you’ll get an MSc in artificial intelligence.


Udacity – Computer Vision Nanodegree


Udacity has profiled itself as a leading learning platform. Its Nanodegree programs provide detailed knowledge on numerous subjects, such as this Computer Vision Nanodegree. The course isn’t a genuine MSc program, but it offers specialization for a specific field of machine learning that may serve for career advancement.


This program includes lessons on the essentials of image processing and computer vision, deep learning, object tracking, and advanced computer vision applications. As with other Udacity courses, learners will enjoy support in real-time as well as career-specific services for professional development after finishing the course.


This Nanodegree has a flexible schedule, allowing you to set a personalized learning pace. The course lasts for three months and has a fee of €944. Scholarship options are also available for this program, and there are no limitations in terms of applying for the course or starting the program.


Lebanese American University – MS in Applied Artificial Intelligence


Lebanese American University curates the MS in Applied Artificial Intelligence study program, led by experienced faculty members. The course is completely online and focuses on practical applications of AI programming, machine learning, data learning, and data science. During the program, learners will have the opportunity to try out AI solutions for real-life issues.


This MS program has a duration of two years. During that time, you can take eight core courses and 10 elective courses, including subjects like Healthcare Analytics, Big Data Analytics, and AI for Biomedical Informatics.


The price of this program is €6,961 per year. It’s worth noting that there’s a set application deadline and starting date for the course. The first upcoming application date is in July, with the program starting in September.


Data Science Degrees: A Complementary Path


Machine learning can be viewed as a subcategory of data science. While the former focuses on methods of supervised and unsupervised AI learning, the latter is a broad field of research. Data science deals with everything from programming languages to AI development and robotics.


Naturally, there’s a considerable correlation between machine learning and data science. In fact, getting familiar with the principles of data science can be quite helpful when studying machine learning. That’s why we compiled a list of degree programs for data science that will complement your machine learning education perfectly.



Top Online Data Science Degree Programs


Purdue Global – Online Bachelor of Science Degree in Analytics


Data analytics represents one of the essential facets of data science. The Online Bachelor of Science Degree in Analytics program is an excellent choice to get familiar with data science skills. To that end, the program may complement your machine learning knowledge or serve as a starting point for a more focused pursuit of data science.


The curriculum includes nine different paths of professional specialization. Some of those concentrations include cloud computing, network administration, game development, and software development in various programming languages.


Studying full-time, you should be able to complete the program within four years. Each course has a limited term of 10 weeks. The program in total requires 180 credits, and the price of one credit is $371 or its equivalent in euros.


Berlin School of Business and Innovation – MSc Data Analytics


MSc Data Analytics is a postgraduate program from the Berlin School of Business and Innovation (BSBI). As an MSc curriculum, the program is relatively complex and demanding, but will be more than worthwhile for anyone wanting to gain a firm grasp of data analytics.


This is a traditional on-campus course that also has an online variant. The program focuses on data analysis and extraction and predictive modeling. While it could serve as a complementary degree to machine learning, it’s worth noting that this course may be the most useful for those pursuing a multidisciplinary approach.


This MSc course lasts for 18 months. Pricing differs between EU and non-EU students, with the former paying €8,000 and the latter €12,600.


Imperial College London – Machine Learning and Data Science


It’s apparent from the very name that this Imperial College London program represents an ideal mix. Machine Learning and Data Science combines the two disciplines, providing a thorough insight into their fundamentals and applications.


The two-year program is tailored for part-time learners. It consists of core modules like Programming for Data Science, Ethics in Data Science and Artificial Intelligence, Deep Learning, and Applicable Mathematics.


This British-based program costs ÂŁ16,200 yearly, both for domestic and overseas students. Some of the methods include lectures, tutorials, exercises, and reading materials.


Thriving Career Opportunities With a Masters in Machine Learning Online


Jobs in machine learning require proper education. The chances of becoming a professional in the field without mastering the subject are small – the industry needs experts.


A Master’s degree in machine learning can open exciting and lucrative career paths. Some of the best careers in the field include:


  • Data scientist
  • Machine learning engineer
  • Business intelligence developer
  • NLP scientist
  • Software engineer
  • Machine learning designer
  • Computational linguist
  • Software developer

These professions pay quite well across the EU market. The median annual salary for a machine learning specialist is about €70,000 in Germany, €68,000 in the Netherlands, €46,000 in France, and €36,000 in Italy.


On the higher end, salaries in these countries can reach €98,000, €113,000, €72,000, and €65,000, respectively. To reach these more exclusive salaries, you’ll need to have a quality education in the field and a level of experience.


Become Proficient in Machine Learning Skills


Getting a Master’s degree in machine learning online is convenient, easily accessible, and represents a significant career milestone. With the pace at which the industry is growing today, it would be a wise choice.


Since the best programs offer a thorough education, great references, and a chance for networking, there’s no reason not to check out the courses on offer. Ideally, getting the degree could mark the start of a successful career in machine learning.

Read the article
Unlocking the Potential of a Masters in Data Science Salary
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
June 30, 2023

Take a sprinkling of math, add some statistical analysis, and coat with the advanced programming and analytics that enables people to pore through enormous batches of data and you have the recipe for a data scientist.


These professionals (and their data-based talents) are sought after in industries of all shapes and sizes. Every sector from healthcare, finance, and retail to communications and even the government can make use of the skills of data scientists to advance. That’s great news if you’re considering completing your Master’s degree in the subject, as your degree is the key that can unlock the door to a comfortable five-figure salary.


Here, we look at the Master’s in data science salary and explain what you can do to maximize your potential.


Masters in Data Science: An Overview


As a postgraduate degree course, a Masters in data science builds on some of the core skills you’ll learn in a computer science or information technology degree. Think of it as a specialization. You’ll expand on the programming and analytical skills you’ve already developed to learn how to extract actionable insights from massive datasets. In the world of Big Data (where companies generate more data than at any other point in history), those skills are more important than ever.


Speaking of skills, you’ll develop or hone the following when studying for your Master’s in data science:


  • Data Analysis – The ability to analyze data (i.e., interpret what seemingly random datasets tell you) is one of the first skills you’ll pick up in your degree.
  • Data Visualization – Where your analysis helps you to see what you’re looking at, data visualization is all about representing that data visually so that others see what you see.
  • AI and Machine Learning – The nascent technologies involved in the artificial intelligence sector revolve around data, in addition to many modern AI technologies being helpful for analyzing data. You’ll learn both sides, developing the skills to both create and use AI.
  • Software Engineering and Programming – Don’t assume the programming skills you have from your previous degree will go to waste, as you’ll need them for a data science Master’s. You’ll use plenty of new tools, in addition to picking up more skills in languages like Python, SQL, and R.
  • Soft Skills – A Master’s in data science isn’t all technical. You’ll develop some soft skills that prove useful in the workplace, such as communication, basic teamwork, and management. Most data science courses also teach ethics so you can get to grips with the idea of doing the right thing with data.

The Top Universities for a Data Science Masters


According to the university rating website Collegedunia, there are more than 60 leading data sciences universities in the United States alone, each offering both Bachelor’s and Master’s degrees in the subject. It ranks the following as the top five institutions for getting your Master’s in data science:


  • MIT – As the top data science university in the world (according to the QS Global Rankings), MIT is the first choice for any prospective student.
  • Harvard University – The “Harvard” name carries weight regardless of the course you choose. Data scientists have their pick of a standard Master’s in data science or a course dedicated to health data science.
  • Columbia University – Those who want to fast-track their studies may find that the intensive one-year data science Master’s that Columbia offers is a better choice than traditional two-year courses.
  • John Hopkins University – Though it’s best known as one of America’s best medical schools, John Hopkins also has a strong data science department. It may be a great choice for those who want to use their data science skills to get into the medical field.
  • Northwestern University – Ranking at 30 in the QS Global Rankings, Northwestern offers Master’s degrees in both data science and analytics, with the latter expanding on one of the core skills needed for data science.

Masters in Data Science Salary Potential


As great as the skills you’ll get will be, you want to know more about the Master’s in data science salary you can expect to earn.


The good news is that a strong salary isn’t just possible. It’s likely. According to Indeed, the average salary for a data scientist is £49,749 in the UK. Cult.Honeypot has interesting figures for Europe as a whole, noting that the average data scientist on the continent earns €60,815, which matches up well to general salary expectations of €60,000. You can also expect a position in this field to come with numerous benefits, including medical insurance (where relevant) and flexible working conditions.


Of course, there are several factors that influence your specific earning power:


  • Geographic location
  • The specific industry in which you work
  • Your experience level
  • The size of the company for which you work

For example, a brand-new graduate who takes a position at a start-up in a non-tech industry may find that they earn at the lower end of the scale, though they’ll develop experience that could serve them well later on.


Data scientists also tend to have higher salary prospects than those in comparable fields. For example, more data from Indeed shows us that data scientists in the UK earn more, on average, than software engineers (£49,409), computer scientists (£45,245), and computer engineers (£24,780). Furthermore, a Master’s in data science is wide-ranging enough that it’ll give you many of the skills you need for the above industries, assuming you’d want a career change or discover that data science isn’t for you.


Benefits of a Masters in Data Science for Earning Power


It’s clear that the Master’s in data science salary potential is strong, with mid-five-figure salaries being the standard (rather than the exception) for the industry. But there are benefits beyond potential earnings that make the Master’s course a good one to take.


More Job Opportunities


Data science is everywhere in modern industry because every company produces data. You can apply your skills in industries like healthcare, manufacturing, and retail, meaning you have plenty of job opportunities. The research backs this statement up, too, with figures from Polaris Market Research suggesting a 27.6% compound annual growth rate (CAGR) for the data science industry between 2022 and 2030.


Greater Job Security


The encroachment of AI into almost every aspect of our lives has many people worried about job security. Some even speculate that machines will take over many roles in the coming years. Data scientists don’t have to worry about that. Not only will you use AI to advance your research, but you may also be responsible for further developments in the AI and machine learning fields. All of which will make you crucial to the continuation of the AI trend.


Opportunities for Career Advancement


The salary figure quoted above (average salary of €60,815) is for a fairly standard data science role. Opportunities for career advancement exist, whether that be simply moving into a more senior position in a company or taking control of a team, thus adding management to your skill set. Those who prefer conducting research will also find that many universities and large companies have teams dedicated to using data science to create social and commercial change.


Tips for Maximizing Earnings With a Masters in Data Science


With the Master’s in data science salary potential already being attractive enough (six figures is a great start), you may not worry too much about maximizing your earning potential at the start of your career. But as you get deeper into your working life, the following tips will help you get more money in return for the skills you bring to the table.


1 – Choose the Right University and Program


Universities aren’t built equally, with some carrying more weight than others. For example, a data science Master’s degree from MIT holds huge weight because it’s one of America’s top universities for the subject. Employers know what the school is about, understand that those who study there undergo superb training, and will thus be more willing to both hire and offer more money to its graduates. The point is that where you go (and what you study in your course) influences how employers see you, which also influences your earning potential.


2 – Gain Relevant Work Experience


As with any career path, what you learn along the path is as valuable as the skills you pick up when studying. You can get a head start on other data science graduates if you take on internships or get involved in research projects while studying, giving you some work experience to add to your resume that could lead to higher initial salary offers.


3 – Leverage Networking and Connections


Meeting the right people at the right times can do wonders for your career. Studying for a Master’s in data science exposes you to professors (and even people who work in the industry) who can put you in touch with people who offer roles in the industry. Continuous building on these connections, from staying active in the industry to leveraging social media, offers more opportunities for advancement.


4 – Stay Up-to-Date With Industry Trends


Data science is a fast-moving sector, with constant advancements occurring at both the high level (the evolution of AI) and in terms of how we use data science in different industries. Keeping on top of these advancements means you stay “in the know” and can see potential career paths branching out before you.


5 – Pursue Additional Qualifications


Keeping with the theme of staying up-to-date, how you build on your skills via continuing education can influence your salary potential. A Master’s degree in data science is impressive. But a degree supplemented by specialized certifications, proof of bootcamp completion, and any other accolades puts you ahead of the pack of other graduates.



Turn Your Master’s in Data Science Into a Great Career


In addition to opening you up to an exciting career in a field that’s undergoing tremendous growth, a Master’s in data science comes with mid-five-figure salary potential. You can boost your Master’s in data science salary expectations through networking, specialization, and simply staying up-to-date with what’s happening in the industry.


Granted, there are time and monetary commitments involved. You usually dedicate two years of your life to getting your degree (though some universities offer one-year data science Master’s courses) and you’ll pay a five-figure sum for your education. But the benefits on the backend of that commitment are so vast that a Master’s in data science may be the key to unlocking huge earnings in the data industry.

Read the article
Can a Biology Student Do BSc in Computer Science?
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
June 30, 2023

Most of the modern world – work, private life, and entertainment – revolves around computers and IT in general. Naturally, this landscape creates a high demand for computer science jobs. As a result, BSc Computer Science positions are well-paid and offer excellent career opportunities.


With all these advantages considered, it’s no wonder that people from other professions pivot toward computer science. This includes biology students, too.


But can a biology student do BSc Computer Science? And, equally as important, should they?


The answer to the first question is relatively complex and will represent the bulk of this article. But the second answer is a resounding yes. Interdisciplinary education can be a massive advantage in today’s world, providing venues for innovation and greater career advances.


Let’s delve deeper into the question of can a biology student do BSc Computer Science.


Background on BSc Computer Science


A BSc degree is often a part of professional development for people interested in IT. The degree usually follows a core computer science course. After obtaining the BSc, you can move forward towards a specialization or pursue a PhD in the field.


As a biology student, your path to BSc Computer Science will be different. The first step on the way is to understand what computer science is, which areas it covers, and what core skills it requires. This section will explain just that, plus the career opportunities that come with BSc Computer Science.


Definition and Scope


Computer science deals with computer systems. If you’re (rightfully) wondering what that means precisely, the answer is: practically anything related to computers.


A computer scientist can work on the architecture and structure of a processor chip. On the other hand, their colleague could be engaged in supporting the structure of the internet. Both roles fall under the umbrella of computer science.


At its core, this branch of IT concerns with questions about the nature of computing. In that light, one of the computer scientist’s main tasks is to understand what a computer system is. Then, these professionals can move onto designing different systems for particular purposes.


Core Subjects and Skills


BSc Computer Science courses teach core subjects that provide the essential skills for the job. As you might presume, programming is the crucial skill of a computer scientist. This skill requires proficiency in programming languages and a deep understanding of data structures. In addition, knowing the ins and outs of algorithms is pivotal for programming.


Software development is another skill that computer scientists must have. Besides coding knowledge, this skill calls for high proficiency in the principles of software engineering. A good computer scientists should be able to perform the entire development process from coding to implementation.


Computer science calls for a good understanding of math basics like algebra and calculus. However, advanced techniques will also be necessary.


Finally, a computer scientist should have a firm grasp on data analysis and visualization. The former improves professional capabilities, while the latter helps communicate the data to the stakeholders.


Core subjects in BSc Computer Science courses that tackle these and other skills include:


  • Programming principles
  • Computer networks
  • Computer architectures
  • Foundational mathematics
  • Data structures and Algorithms
  • Web development
  • Introduction to operating systems
  • Cloud computing
  • Programming paradigms

Job Prospects and Career Opportunities


Employment in the computer science sector is growing rapidly, following a trend that’s projected to continue throughout the decade. The U.S. Bureau of Labor Statistics expects a 15% growth in the computer science landscape, along with hundreds of thousands of new jobs.


As the IT sector keeps innovating, even more jobs may become available. After all, many of today’s most desired professions didn’t exist at the start of the century, and computer science is developing rapidly.


Some of the career opportunities in computer science are for programmers, systems analysts, support specialists, software and computer engineers, and data scientists.



Comparing Biology and Computer Science


The question of can a biology student do BSc Computer Science comes down to a few crucial considerations. One of the first things you might ask is: what do computer science and biology even have in common.


Surprisingly, there are considerable similarities between the two fields.


Similarities


The most obvious aspect that computer science and biology share is that both are scientific disciplines. This means that the scientific approach is a hard requirement for both fields.


Biology and computer science aim to solve problems following two crucial methods: data analysis and interpretation and the scientific principle. A computer scientist will follow the same path to a conclusion as a biologist:


  • Observation
  • Question
  • Hypothesis
  • Prediction
  • Testing
  • Iteration

Furthermore, both disciplines will utilize mathematical models, although computer science will lean into math more than biology. Lastly, living organisms can be thought about as systems, which is somewhat similar to a computer scientist’s understanding of computers and other IT technologies.


Differences


Of course, the differences between biology and computer science will be much more evident. The two fields employ completely different sets of skills and require knowledge specific to their subjects. Naturally, people specializing in biology and computer science will also have completely different career paths.


When it comes to the underlying principles behind the two sciences, other crucial differences come to mind:


  • Computer scientists regularly build artificial systems while biologists explore natural ones.
  • As a science, biology is more based on observation, unlike the often experimental computer science.
  • Biology is often regarded as an applied field, while computer science may be viewed as more abstract.

Assessing the Feasibility of a Biology Student Pursuing BSc Computer Science


Now that we’ve seen what makes biology and computer science similar in some regards and different in others, let’s return to the original question:


Can a biology student do BSc Computer Science?


To answer that question, we’ll need to look at two aspects. Firstly, doing a BSc in Computer Science comes with certain prerequisites. And second, you as a biology student must be ready and willing to adapt to the new field.


Analyzing the Prerequisites


The essential skills that are required for a BSc in Computer Science include programming and mathematics. As a biology student, you’ll likely already have some courses in math, which will make that part of the equation easier.


However, programming definitely won’t be a part of the standard biology curriculum. The same goes for other computer science skills.


Yet, this mismatch doesn’t mean that a biology student can’t pivot towards computer science. The process will only require more effort than for someone with a computer science background.


To enroll in a BSc Computer Science program, you’ll need to have a good grasp of the mentioned skills. Since studying biology doesn’t offer knowledge on programming or computer science in general, you’ll need to acquire those skills in addition to your primary studies.


The good news is that you won’t need any other specific knowledge besides math and the basics of programming and computer science. If you’re seriously considering transitioning into computer science, fulfilling these prerequisites will be well worth your while.


Evaluating the Adaptability


Besides the necessary entry-level knowledge for a BSc Computer Science, another factor will determine your success: whether you can adapt to the new field of study.


The similarities between biology and computer science will play a massive role here.


You can lean into your understanding of the scientific principle and apply it to computer systems rather than biological organisms. The transition can be viewed as following the same general methods but using them on a different subject.


Also, data collection and analysis skills will be an excellent foundation for computer science. These skills are vital in biology. Luckily, they also represent an essential part of computer science, so you’ll be able to apply them to the new discipline relatively easy.


Granted, the usefulness of your prior knowledge and skills will reach a limit at a point. Then, you’ll need to show another crucial quality: the willingness to adopt new concepts and learn new subjects.


Your advantage will be in the foundational scientific skills that you’ll have as a biologist. Building on those skills with computer science-specific knowledge will make your transition smoother. The key consideration here will be that you’re ready to learn.


Options for Biology Students to Transition Into BSc Computer Science


The final part of answering the question of can a biology student do BSc Computer Science is the practical method of transitioning. You’ll have several options in that regard:


  • Enroll in a bridge course or a preparatory program
  • Complete an online course and get the appropriate certification
  • Rather than biology alone, opt for an interdisciplinary degree or a dual-degree program
  • Pursue a biology degree simultaneously with a computer science minor

Each of these options will help you gain the necessary knowledge for the BSc and prepare for a career in computer science.



Can a Biology Student Do BSc Computer Science? Absolutely!


As you’ve seen, the path from a biology student to BSc in Computer Science isn’t a straight one. However, it’s completely achievable if you have the motivation.


Getting interdisciplinary education will represent an excellent opportunity for professional growth. Better yet, it will open up your possibilities for personal development as well. Learning about a new discipline is always a benefit, even if you pursue a different career path later in life.


If computer science sounds like an interesting prospect, nothing stops you from following that line of study. Fortunately, the opportunities for just that are readily available. Enlist in a quality BSc course and start building your knowledge base and skills.

Read the article
Top Three Courses in BSc Computer Science With Artificial Intelligence and Machine Learning
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
June 30, 2023

AI is already a massive industry – valued at $136.55 billion (approx. €124.82 billion) as of 2022 – and it’s only going to get bigger as we come to grips with what AI can do. As a student, you stand on the cusp of the AI tidal wave and you have an opportunity to ride that wave into a decades-long career.


But you need a starting point for that career – a BSc computer science with artificial intelligence. The three courses discussed in this article are the best for budding AI masters.


Factors to Consider When Choosing a BSc Computer Science With AI Program


Before choosing your BSc, you need to know what to look for in a good course:


  • Institution Accreditation – Whoever provides the course should offer solid accreditation so that you know you can trust the institution and that potential future employers actually respect the qualification you have on your VC.
  • An AI-Focused Curriculum – Not all computer science bachelor’s degrees are the same. The one you choose needs to offer a specific focus on AI or machine learning so you can build the foundations for later specialization.
  • Faculty Expertise – A course led by instructors who don’t know much about AI is like the blind leading the blind. Every mentor, instructor, and lecturer needs to have provable knowledge and industry experience.
  • Job Opportunities – Every chance you have to “get your hands dirty” with AI is going to look great on your CV. Look for courses that create pathways into internships and job programs. Associations with organizations like IBM are a great place to start.
  • Financial Aid – It isn’t cheap to study a BSc artificial intelligence and machine learning. Degrees cost thousands of Euros per year (the average in Europe is about €3,000, though prices can go higher) so the availability of financial aid is a huge help.

Top BSc Computer Science With AI Programs


Studying from the best is how you become a leader in the AI field. The combination of expert tuition and the name recognition that comes from having a degree from one of the following institutions stands you in good stead for success in the AI industry. Here are the top three organizations (with degrees available to overseas students) in the world.



Course 1 – BSc Artificial Intelligence – The University of Edinburgh


Named as one of the top 10 AI courses in the world by Forbes, The University of Edinburgh’s offering has everything you need from a great BSc computer science with artificial intelligence. It’s a four-year full-time course that focuses on the applications of AI in the modern world, with students developing the skills to build intelligent systems capable of making human-like decisions. The course is taught by the university’s School of Informatics, led by National Robotarium academic co-lead Professor Helen Hastie.


The course starts simple, with the first year dedicated to learning the language of computers before the second year introduces students to software development and data science concepts. By the third year, you’ll be digging deep into machine learning and robotics. That year also comes with opportunities to study abroad.


As for career prospects, The University of Edinburgh has a Careers Service department that can put you in line for internships at multi-national businesses. Add to that the university’s huge alumni network (essentially a huge group of professionals willing to help students with their careers) and this is a course that offers a great route into the industry.


Course 2 – Artificial Intelligence Program – Carnegie Mellon University


Ranked as the top university in the world for AI courses by Edurank, Carnegie Mellon University is a tough nut to crack if you want to study its world-renowned program. You’ll face a ton of competition, as evidenced by the university’s 17% acceptance rate, and the program is directed by Reid Simmons. For those who don’t recognize the name, he’s been a frontrunner in leveraging AI for NASA and was the creator of the “Robotceptionist.”


As for the course, it blends foundational mathematical, statistical, and computer science concepts with a wide variety of AI modules. It’s robotics-focused (that’s no surprise given the director), though you’ll also learn how AI applies on a perceptive level. The use of AI in speech processing, search engines, and even photography are just some examples of the concepts this course teaches.


Carnegie Mellon takes an interesting approach to internships, as it offers both career and academic internships. Career internships are what you’d expect – placements with major companies where you get to put your skills into practice. An academic internship is different because you’ll be based in the university and will work alongside its faculty on research projects.


Course 3 – BSc in Artificial Intelligence and Decision Making – Massachusetts Institute of Technology (MIT)


It should come as no surprise that MIT makes it onto the list given the school’s engineering and tech focus. Like Carnegie Mellon’s AI course, it’s tough to get into the MIT course (only a 7% acceptance rate) but simply having MIT on your CV makes you attractive to employers.


The course takes in multiple foundational topics, such as programming in Python and introductions to machine learning algorithms, before moving into a robotics focus in its application modules. But it’s the opportunities for research that make this one stand out. MIT has departments dedicated to the use of AI in society, healthcare, communications, and speech processing, making this course ideal for those who wish to pursue a specialization.


Networking opportunities abound, too. MIT’s AI faculty has 92 members, all with different types of expertise, who can guide you on your path and potentially introduce you to career opportunities. Combine that with the fact you’ll be working with some of the world’s best and brightest and you have a course that’s built for your success in the AI industry.


Emerging BSc Computer Science With AI programs


Given that AI is clearly going to be enormously important to developing industry in the coming years, it’s no surprise that many institutions are creating their own BSc computer science with artificial intelligence courses. In the UK alone, the likes of Queen’s University Belfast and Cardiff University are quickly catching up to The University of Edinburgh, especially in the robotics field.


In North America, the University of Toronto is making waves with a course that’s ranked the best in Canada and fifth in North America by EduRank. Interestingly, that course is a little easier to get into than many comparable North American courses, given its 43% acceptance rate.


Back in the UK, the University of Oxford is also doing well with AI, though its current courses tend to be shorter and specialized in areas like utilizing AI in business. We’re also seeing Asian universities make great progress with their courses, as both Tsinghua University and Nanyang Technological University are establishing themselves as leaders in the space.


Importance of Hands-On Experience and Internships


As important as foundational and theoretical knowledge is, it’s when you get hands-on that you start to understand how much of an impact AI will have on business and society at large. Good universities recognize this and offer hands-on experience (either via research or internship programs) that offer three core benefits:


  • Gain Practical Skills – Becoming a walking encyclopedia for the theory of AI is great if you intend on becoming a teacher. But for everybody else, working with hands-on practical experiments and examples is required to develop the practical skills that employers seek.
  • Networking – A strong faculty (ideally with industry as well as academic connections) will take you a long way in your BSc computer science with artificial intelligence. The more people you encounter, the more connections you build and the better your prospects are when you complete your course.
  • Enhanced Job Prospects – Getting hands-on with real-world examples, and having evidence of that work, shows employers that you know how to use the knowledge you have knocking around your head. The more practical a course gets, the better it enhances your job prospects.

Scholarships and Financial Aid Opportunities


Due to BSc artificial intelligence and machine learning courses being so expensive (remember – an average of €3,000 per year), financial aid is going to be important for many students. In the UK, that aid often comes in the form of student loans, which you don’t have to start repaying until you hit a certain earnings threshold.


When we take things Europe-wide, more scholarship and financial aid programs become available. The Erasmus program offers funding for master’s students (assuming they meet the criteria) and there are several scholarship portals, such as EURAXESS and Scholarshipportal designed to help with financial aid.


If this is something you’re interested in, the following tips may help you obtain funding:


  • Excel academically in pre-university studies to demonstrate your potential
  • Speak to the finance teams at your university of choice to see what’s currently available
  • Apply for as many scholarship and aid programs as you can to boost your chances of success

Try the Top BSc Artificial Intelligence and Machine Learning Programs


The three BSc computer science with artificial intelligence programs discussed in this article are among the best in the world for many reasons. They combine intelligence course focuses with faculty who not only know how to teach AI but have practical experience that helps you learn and can serve useful networking purposes.


The latter will prove increasingly important as the AI industry grows and becomes more competitive. But as with any form of education, your own needs are paramount. Choose the best course for your needs (whether it’s one from this list or an online BSc) and focus your efforts on becoming the best you can be.

Read the article
Different Types of Cloud Computing Deployment Models & Services
Lokesh Vij
Lokesh Vij
June 28, 2023

It’s hard to find a person who uses the internet but doesn’t enjoy at least one cloud computing service. “Cloud computing” sounds complex, but it’s actually all around you. The term encompasses every tool, app, and service that’s delivered via the internet.


The two popular examples are Dropbox and Google Drive. These cloud-based storage spaces allow you to keep your files at arm’s reach and access them in a few clicks. Zoom is also a cloud-based service – it makes communication a breeze.


Cloud computing can be classified into four types: public, private, hybrid, and community. These four types belong to one of the three cloud computing service models: infrastructure as a service, platform as a service, or software as a service.


It’s time to don a detective cap and explore the mystery hidden behind cloud computing.


Cloud Computing Deployment Models


  • Public cloud
  • Private cloud
  • Hybrid cloud
  • Community cloud

Public Cloud


The “public” in public cloud means anyone who wants to use that service can get it. Public clouds are easy to access and usually have a “general” purpose many can benefit from.


It’s important to mention that with public clouds, the infrastructure is owned by the service provider, not by consumers. This means you can’t “purchase” a public cloud service forever.


Advantages of Public Cloud


  • Cost-effectiveness – Some public clouds are free. Those that aren’t free typically have a reasonable fee.
  • Scalability – Public clouds are accommodating to changing demands. Depending on the cloud’s nature, you can easily add or remove users, upgrade plans, or manipulate storage space.
  • Flexibility – Public clouds are suitable for many things, from storing a few files temporarily to backing up an entire company’s records.

Disadvantages of Public Cloud


  • Security concerns – Since anyone can access public clouds, you can’t be sure your data is 100% safe.
  • Limited customization – While public clouds offer many options, they don’t really allow you to tailor the environment to match your preferences. They’re made to suit broad masses, not particular individuals.

Examples of Public Cloud Providers


  • Amazon Web Services (AWS)
  • Microsoft Azure
  • Google Cloud Platform

Private Cloud


If you’re looking for the complete opposite of public clouds, you’ve found it. Private clouds aren’t designed to fit general criteria. Instead, they’re made to please a single user. Some of the perks private clouds offer are exclusive access, exceptional security, and unmatched customization.


A private cloud is like a single-tenant building. The tenant owns the building and has complete control to do whatever they want. They can tear down walls, drill holes to hang pictures, paint the rooms, install tiles, and get new furniture. When needs change, the tenant can redecorate, no questions asked.


Advantages of Private Cloud


  • Enhanced security – The company’s IT department oversees private clouds. They’re usually protected by powerful firewalls and protocols that minimize the risk of information breaches.
  • Greater control and customization – Since private clouds are one-on-one environments, you can match them to your needs.
  • Improved performance – Private clouds can have functions that suit your organization to the letter, resulting in high performance.

Disadvantages of Private Cloud


  • Higher costs – The exclusive access and customization come at a cost (literally).
  • Limited scalability – You can scale private clouds, but only up to a certain point.

Examples of Private Cloud Providers


  • VMware
  • IBM Cloud
  • Dell EMC

Hybrid Cloud


Public and private clouds have a few important drawbacks that may be deal-breakers for some people. You may want to use public clouds but aren’t ready to compromise on security. On the other hand, you may want the perks that come with private clouds but aren’t happy with limited scalability.


That’s when hybrid clouds come into play because they let you get the best of both worlds. They’re the perfect mix of public and private clouds and offer their best features. You can get the affordability of public clouds and the security of private clouds.


Advantages of Hybrid Cloud


  • Flexibility and scalability – Hybrid clouds are personalized environments, meaning you can adjust them to meet your specific needs. If your needs change, hybrid clouds can keep up.
  • Security and compliance – You don’t have to worry about data breaches or intruders with hybrid clouds. They use state-of-the-art measures to guarantee safety, privacy, and security.
  • Cost optimization – Hybrid clouds are much more affordable than private ones. You’ll need to pay extra only if you want special features.

Disadvantages of Hybrid Cloud


  • Complexity in management – Since they combine public and private clouds, hybrid clouds are complex systems that aren’t really easy to manage.
  • Potential security risks – Hybrid clouds aren’t as secure as private clouds.

Examples of Hybrid Cloud Providers


  • Microsoft Azure Stack
  • AWS Outputs
  • Google Anthos

Community Cloud


Community clouds are shared by more than one organization. The organizations themselves manage them or a third party. In terms of security, community clouds fall somewhere between private and public clouds. The same goes for their price.


Advantages of Community Cloud


  • Shared resources and costs – A community cloud is like a common virtual space for several organizations. By sharing the space, the organizations also share costs and resources.
  • Enhanced security and compliance – Community clouds are more secure than public clouds.
  • Collaboration opportunities – Cloud sharing often encourages organizations to collaborate on different projects.

Disadvantages of Community Cloud


  • Limited scalability – Community clouds are scalable, but only to a certain point.
  • Dependency on other organizations – As much as sharing a cloud with another organization(s) sounds exciting (and cost-effective), it means you’ll depend on them.

Examples of Community Cloud Providers


  • Salesforce Community Cloud
  • Rackspace
  • IBM Cloud for Government

Cloud Computing Service Models


There are three types of cloud computing service models:


  • Infrastructure as a Service (IaaS)
  • Platform as a Service (PaaS)
  • Software as a Service (SaaS)

IaaS


IaaS is a type of pay-as-you-go, third-party service. In this case, the provider gives you an opportunity to enjoy infrastructure services for your networking equipment, databases, devices, etc. You can get services like virtualization and storage and build a strong IT platform with exceptional security.


IaaS models give you the flexibility to create an environment that suits your organization. Plus, they allow remote access and cost-effectiveness.


What about their drawbacks? The biggest issue could be security, especially in multi-tenant ecosystems. You can mitigate security risks by opting for a reputable provider like AWS or Microsoft (Azure).


PaaS


Here, the provider doesn’t deliver the entire infrastructure to a user. Instead, it hosts software and hardware on its own infrastructure, delivering only the “finished product.” The user enjoys this through a platform, which can exist in the form of a solution stack, integrated solution, or an internet-dependent service.


Programmers and developers are among the biggest fans of PaaS. This service model enables them to work on apps and programs without dealing with maintaining complex infrastructures. An important advantage of PaaS is accessibility – users can enjoy it through their web browser.


As far as disadvantages go, the lack of customizability may be a big one. Since you don’t have control over the infrastructure, you can’t really make adjustments to suit your needs. Another potential drawback is that PaaS depends on the provider, so if they’re experiencing problems, you could too.


Some examples of PaaS are Heroku and AWS Elastic Beanstalk.


SaaS


Last but not least is SaaS. Thanks to this computing service model, users can access different software apps using the internet. SaaS is the holy grail for small businesses that don’t have the budget, bandwidth, workforce, or will to install and maintain software. Instead, they leave this work to the providers and enjoy only the “fun” parts.


The biggest advantage of SaaS is that it allows easy access to apps from anywhere. You’ll have no trouble using SaaS as long as you have internet. Plus, it saves a lot of money and time.


Nothing’s perfect, and SaaS is no exception. If you want to use SaaS without interruptions, you need to have a stable internet connection. Plus, with SaaS, you don’t have as much control over the software’s performance and security. Therefore, you need to decide on your priorities. SaaS may not be the best option if you want a highly-customizable environment with exceptional security.


The most popular examples of SaaS are Dropbox, Google Apps, and Salesforce.



Sit on the Right Cloud


Are high security and appealing customization features your priority? Or are you on the hunt for a cost-effective solution? Your answers can indicate which cloud deployment model you should choose.


It’s important to understand that models are not divided into “good” and “bad.” Each has unique characteristics that can be beneficial and detrimental at the same time. If you don’t know how to employ a particular model, you won’t be able to reap its benefits.

Read the article
The Advantages of Cloud Computing and Its Drawbacks
Lokesh Vij
Lokesh Vij
June 28, 2023

Gone are the days when you had to store boxes of documents in your office. Salvation came in the form of cloud computing in the 2000s. Since then, it’s made a world of difference for businesses across all industries, increasing productivity, organization, and decluttering the workspace. More importantly, it allows businesses to reduce various expenses by 30%-50%.


Cloud computing has countless benefits, but that doesn’t mean the technology is flawless. On the contrary, you should be aware of several disadvantages of cloud computing that can cause many problems with your implementation. Weighing up the pros and cons is essential – and we’ll do precisely that in this article.


Read on for the advantages and disadvantages of cloud computing.


Advantages of Cloud Computing


The cloud computing market is worth more than $540 billion. The main reason being that over 90% of all companies use some form of this technology. Here’s why they rely on cloud-based platforms.


Cost Efficiency


One of the greatest benefits of cloud computing is that it’s cost-efficient and allows you to reduce business expenses on three fronts.


Reduced Hardware and Software Expenses


You don’t need physical hardware to store your documents if you have a cloud computing platform. Likewise, the technology eliminates the need to run multiple software platforms because you can keep all your files in one place.


Lower Energy Consumption


In-house storage solutions can be convenient, but they consume a lot of electricity. Conversely, cloud computing systems help companies increase energy efficiency by over 90%.


Minimal Maintenance Costs


Maintaining such platforms is straightforward and affordable as cloud computing doesn’t involve heavy-duty software and hardware.


Scalability and Flexibility


Another reason cloud computing is popular is its scalability and flexibility. Here’s what underpins these advantages of cloud computing.


Easy Resource Allocation and Management


You don’t need to allocate your storage resources to numerous solutions if you have a unified cloud computing system. Managing your storage requirements becomes much easier with all your money going into one channel.


Pay-As-You-Go Pricing Model


Cloud-based platforms are available on a pay-as-you-go model. This reduces the risk of overpaying for your service because you’re only charged for the amount of data used.


Rapid Deployment of Applications and Services


Deploying cloud computing applications and services is simple. There’s no need for intense employee training, which further reduces your costs.


Accessibility and Mobility


Cloud computing is a highly accessible and mobile technology that can elevate your efficiency in a number of ways.


Access to Data and Applications From Anywhere


All it takes to access a cloud-based platform is a stable internet connection. As a result, you can retrieve key files virtually anywhere.


Improved Collaboration and Productivity


The ability to access data and applications from anywhere boosts collaboration and productivity. Your team gets a unified platform where they can share data with others much faster.


Support for Remote Work and Distributed Teams


Setting up a remote workspace is seamless with a cloud-computing solution. Employees no longer have to come to the office to perform repetitive tasks since they can do them from their computers.


Enhanced Security


If you want to address the most common security concerns in your organization, cloud computing is an excellent option.


Centralized Data Storage and Protection


By storing your information in a centralized location, you decrease the risk of data theft. In essence, you funnel all your resources into one platform rather than spread them out across multiple channels.


Regular Security Updates and Patches


Cloud computing providers offer regular updates to protect your information. Systems with the latest security patches are less prone to cyber attacks.


Advanced Encryption and Authentication Methods


You can also benefit from cloud computing tools due to their next-level encryption and authentication solutions. Most platforms feature AES 256-bit encryption, which is the most advanced and practically impregnable method. Furthermore, two-factor authentication lowers the chances of unauthorized access.


Disaster Recovery and Business Continuity


Business continuity and disaster recovery are two of the most pressing business challenges. Cloud computing solutions can help address these problems.


Automated Data Backup and Recovery


Many cloud storage systems are designed to automatically backup and recover your data. Hence, you don’t need to worry about losing your information in the event of a power outage.


Reduced Downtime and Data Loss


Since cloud computing helps prevent data loss, this technology also saves you less downtime. You don’t have to retrieve information manually because the platform does the work for you.


Simplified Disaster Recovery Planning


Although cloud computing tools are reliable, they’re not immune to failure caused by power loss, natural disasters, and other factors. Fortunately, these platforms have robust disaster recovery plans to get your system up and running in no time.



Disadvantages of Cloud Computing


Since the technology is so effective, you might be asking yourself: “Are there any disadvantages of cloud computing?” There are, and you need to understand these downsides to determine the best way to implement the technology. Here are the main drawbacks of cloud computing.


Data Privacy and Security Concerns


Like any other online technology, cloud computing can put users at risk of data privacy and security concerns.


Potential for Data Breaches and Unauthorized Access


While cloud apps have exceptional security practices, cyber criminals can bypass them with state-of-the-art technology and innovative hacking methods. Consequently, they may gain access to your information and steal your credentials.


Compliance With Data Protection Regulations


Your cloud computing tool may comply with many data protection regulations, but this doesn’t mean your information is 100% secure. Some standards only require apps to use robust password practices and fail to consider other attack methods, such as phishing.


Trusting Third-Party Providers With Sensitive Information


Online services require you to share your information to enable all features. Cloud computing is no different in this respect. You need to provide a third-party vendor with your data, which can be risky.


Limited Control and Customization


Cloud computing is a flexible and scalable technology. At the same time, it limits your control and customization options, which is why you might not be 100% happy with your platform.


Dependence on Cloud Service Providers


You decide what files you wish to share with your cloud-based solution. However, that’s pretty much it when it comes to the control you have over the platform. You depend on the vendor for every other aspect, including updates and patches.


Restrictions on Software and Hardware Customization


There aren’t many options to choose from when selecting a cloud storage plan. The price of your plan mostly depends on how much data you wish to share. Other than that, you get little-to-no hardware and software customization features.


Potential for Vendor Lock-In


Once you create an account with one cloud computing provider, you might not be happy with their services. As a result, you want to switch to a different platform. Many people think this is a simple transition, but that’s not always the case. Even though you can cancel your plan, migrating your data from one tool to the next can be difficult.


Network Dependency and Connectivity Issues


You might be relieved once you set up an account on a cloud-based platform: “I no longer need to clutter my office with masses of documents because I can now use an internet tool.” That said, using an online app also means you depend on network quality.


Reliance on Stable Internet Connection


A stable internet connection is essential for cloud computing. Internet problems can reduce or prevent you from accessing your files altogether.


Performance Issues Due to Network Latency


If your cloud network has high latency, sharing files can be challenging. In turn, latency reduces productivity and collaboration.


Vulnerability to Distributed Denial-of-Service (DDoS) Attacks


Cloud platforms are susceptible to so-called DDoS attacks. A cyber criminal can target your tool and keep you from accessing the service.


Downtime and Service Reliability


Not every cloud computing system performs the same in terms of reducing downtime and maximizing reliability.


Risk of Outages and Service Disruptions


While cloud-based solutions have exceptional recovery plans and backup methods, you’ll still face some downtime in case of outages. Even the shortest service disruption can cause major issues when working on certain projects.


Shared Resources and Potential for Performance Degradation


Cloud systems are convenient because they allow you to store your data in one place. Nonetheless, one of the key disadvantages of cloud computing is managing those shared resources. Accessing information can become difficult if you don’t stay on top of it.


Likewise, performance can drop at any point of your plan. App incompatibility and other issues can compromise data architecture and further compromise management.


Dependence on Provider’s Service Level Agreements (SLAs)


You’ll probably need to enter into an SLA when partnering with a cloud computing provider. These contracts can be rigid, meaning they may fail to recognize and adapt to evolving business needs.



Make an Informed Decision


Cloud computing has tremendous benefits, like improved data storage, collaboration, and cost reduction. The main drawbacks include hardware and software restrictions, connectivity issues, and potential downtime.


Therefore, you should understand the advantages and disadvantages of cloud computing before implementing a platform. Also, consider your business needs when partnering with a cloud provider to help prevent compatibility issues.

Read the article