The Magazine
👩‍💻 Welcome to OPIT’s blog! You will find relevant news on the education and computer science industry.
Search inside The Magazine
As the world becomes increasingly data-driven and computing power advances beyond all expectations, two intriguing fields are at the center of attention – data science and machine learning.
These fields are often grouped together as they have numerous contact points. First and foremost, both areas are all about data. But data science primarily focuses on extracting valuable insights from data, while machine learning aims to use the data to make predictions and decisions without explicit programming.
These revolutionary technologies have seeped into (and revolutionized) virtually every existing sector: healthcare, business, finance, retail, IT, and the list can go on and on. So, no wonder companies are constantly seeking highly skilled professionals in these fields.
If you’d like to build a career in these highly lucrative fields, improving your skills and knowledge is an absolute must.
Luckily, nowadays, you don’t have to leave your home to achieve this level of expertise. Just pick a data science and machine learning course from this list (or do all three!), and you’ll be well on your way toward a bright future in these burgeoning fields.
Top Data Science and Machine Learning Courses
Whether you’ve just started to dip your toes in these fields or want to take your skills to the next level, you’ll find the perfect data science and machine learning course on our list.
Data Science: Machine Learning by Harvard University
The first data science and machine learning course on the list is classified as an introductory course. In other words, it’s ideal for beginners.
The course first tackles the basics of machine learning, gradually digging deeper into popular algorithms, principal component analysis, and building recommendation systems. You’ll finish this course with fundamental data science and machine learning skills.
The class lasts eight weeks and is entirely self-paced. The recommended time commitment is two to four hours per week, but every learner can tailor it to their needs. Another great option is auditing this data science and machine learning course for free. But you’ll have to pay a fee for a verified certificate and unlimited access to the materials.
The $109 (a little over €101) cost is a small price for the theoretical and hands-on knowledge you’ll gain after this course.
Unfortunately, not everyone will be given a chance to gain this knowledge. Due to some licensing issues, this course isn’t available for learners in Iran, Cuba, and Ukraine (the Crimea region). Another potential downside is that the class is a section of a nine-part data science program. And most of those nine parts precede this course. Although not obligatory, the program creators recommend taking these courses in order, which can be too much time and financial commitment for some learners.
Machine Learning, Data Science, and Deep Learning With Python by Udemy
Do you feel like you need more hands-on experience in machine learning and data science? Have you had to pass on promising job applications because you don’t meet the listing requirements? If you’ve answered positively to both questions, here’s some good news. This data science and machine learning course was custom-made for you.
And no, these aren’t empty promises à -la infomercials you see on TV. This course covers all the most common requirements big-tech companies seek in data scientist job listings. Implementing machine learning at a massive scale, making predictions, visualizing data, classifying images and data — you name it, this course will teach it.
Naturally, this is the single most considerable advantage of this course. It will give you the necessary skills to successfully navigate the lucrative career paths of data science and machine learning. But this only goes if you already have some experience with coding and scripting. Unfortunately, this course isn’t beginner-friendly (in terms of Python, not data science), so not everyone can take it immediately.
Those who do will enjoy over 100 on-demand video lectures, followed by several additional resources. For a $119.99 (approximately €112) fee, you’ll also receive a shareable certificate and full lifetime access to the course.
Data Science and Machine Learning: Making Data-Driven Decisions by MIT
The last item on our list is a big-league data science and machine learning course. The word “course” might even be an understatement, as it’s closer to an entire learning program encompassing a broad set of educational activities.
For starters, the course involves a mentorship program with leading industry experts as guides. And this isn’t a one-and-done type of program either; you’ll have weekly online meetings in small groups. The course itself is taught by MIT faculty and industry experts with years of experience under their belts.
In 12 weeks, you’ll significantly grow your data science and machine learning portfolio, examine numerous case studies, acquire valuable knowledge in applying multiple skills (clustering, regression, classification, etc.), and receive a professional certificate to prove it.
The only notable downside of this extensive data science and machine learning course is its price. With a $2,300 (around €2,142) fee, this course is far from accessible for an average learner. However, those who can afford it should consider it a long-term investment, as this course can be a one-way ticket to a successful career in data science and machine learning.
Factors to Consider When Choosing a Course
Online learning platforms have democratized the world of learning. Now, you can learn whatever you want from wherever you are and at whatever pace works best for you.
But keep in mind that this goes for instructors as well. Anyone can now teach anything. To avoid wasting your time and money on a subpar course, consider these factors when choosing the perfect data science and machine learning course.
Course Content and Curriculum
First things first: check what the course is about. The course’s description will usually contain a “Curriculum” section where you can clearly see whether it delves into topics that interest you. If you have experience in the field, you’ll immediately know if the course spends too much time on skills you’ve already mastered.
Course Duration and Flexibility
Most online courses are self-paced. Sure, this kind of flexibility is mostly a good thing. But if you lack discipline, it can also be detrimental. So, before starting the course, check its duration and make sure you can fully commit to it from beginning to end.
Instructor Quality and Expertise
A data science and machine learning course will undoubtedly contain portions some learners might perceive as challenging or tedious. If there’s one thing that can help them breeze through these parts, it’s an engaging and personable instructor.
So, before committing to a course, research the instructor(s) a little bit. Check their bios and play a video to ensure their teaching style works for you.
Cost and Return on Investment
A data science and machine learning course can cost upwards of thousands of dollars. To ensure you’ll get your money’s worth, check how well it will prepare you for finding a job in the field.
Does it come with a highly requested certification? Does it cover the skills your future employers seek? These are just some of the questions you should consider before investing in a data science and machine learning course.
Hands-On Experience and Real-World Projects
This is another factor that can make investing in a data science and machine learning course well worth it. As valuable as theory is, hands-on experience is king in these fields. Working on real-world projects and building a rock-solid portfolio opens up new doors for you, even before leaving the course.
Networking Opportunities and Job Placement Assistance
A strong support system and direct contact with instructors and mentors should be a course must-have for anyone interested in a data science and machine learning career. Meet notable figures in the industry and stand out among the course goers, and incredible job opportunities should follow suit.
Tips for Success in Data Science and Machine Learning Courses
You can get straight to learning after selecting the perfect data science and machine learning course. Sure, closely following the curriculum will help you gain the necessary knowledge and skills in these fields. But following these tips while studying will do wonders for your future career prospects:
- Develop a strong foundation in mathematics and programming: This will allow you to take more advanced courses and breeze through the rest.
- Stay up-to-date with industry trends and advancements: Despite being updated frequently, the courses can barely keep up with the innovations in the field.
- Engage in online forums and communities for support and networking: Sharing ideas and receiving feedback can help you overcome learning challenges.
- Practice your skills through personal projects and competitions: Challenge yourself to go beyond the scope of the course.
- Seek internships and job opportunities to gain real-world experience: Besides looking great on your resume, these will help you get the hang out of things much quicker.
Learn, Practice, Excel
A carefully selected data science and machine learning course is an excellent opportunity to enter these booming fields with a bang. Developing data science and machine learning skills further will help you stay there and enjoy a successful and rewarding career for years to come.
You’d be hard-pressed to find a more rapidly evolving industry than computer science today. It seems like new solutions and applications in the field pop up every day, and the market has never been hungrier for talent.
If you’re interested in computer science, you’re in luck. This industry has some of the best-paid jobs worldwide and is full of exciting developments and novel challenges. Of course, many people are competing for those work positions, which is why you must do everything in your power to gain an advantage.
With an online masters computer science program, you can get the edge over other candidates in the market. Completing such a program will provide you with cutting-edge knowledge and equip you with the most relevant skills. In other words, an online MSc computer science program may help you start a career in the field.
But choosing the best online masters computer science program may be more complex than it seems. Numerous institutions offer this type of education, so finding the top options among the crowd could be a challenge.
This article will serve as your complete guide to online masters computer science programs. We’ll explain what to look for, recommend some of the leading options, tell you how to apply, and outline what awaits once you graduate.
Factors to Consider When Choosing an Online Masters in Computer Science Program
It goes without saying that you shouldn’t enroll in a master’s program without closely examining your options. Be sure to pay attention to specific criteria when considering where you’ll get your online MSc computer science degree:
- Accreditation: You’ll want to graduate at an accredited institution with degrees that are recognized worldwide. Other universities and employers won’t consider unaccredited degrees particularly valuable or trustworthy. Plus, accreditation serves as proof that an educational institution meets certain international standards.
- Curriculum and specializations: Your choice of an online masters computer science program will depend on the classes provided. The curriculum should be appropriate for your purposes and goals. And since computer science is a broad field, you’ll want to ensure the program has the right specialization options for you.
- Faculty expertise: A master’s program will often be only as efficient as the people teaching it. Faculty members at your program of choice should, of course, be experts. They should also have extensive experience to provide practical guidance and show you how computer science is applied in real-life.
- Program format and flexibility: Online programs have the major advantage of not requiring you to physically attend classes. This means that a certain level of flexibility is expected, both in terms of day-to-day lectures and deadlines. The flexibility principle often extends to the curriculum itself, with many programs offering a large number of electives.
- Tuition fees and financial aid: Considering the tuition price is always worthwhile. Like everything else in the market, master’s programs can be under- or overpriced. You should take care that you’re getting the right value for a reasonable sum. Plus, there are usually financial aid options available to help soften the financial impact.
- Student support services: Lastly, the best online masters computer science programs will offer extensive support to students. This can represent a massive benefit when you need counseling or extra guidance. Even better, your program might include career support, nurturing you from student to graduate to employee.
Top Online Masters in Computer Science Programs
1. International University of Applied Sciences (IU) – Master’s in Computer Science
This program offers practical education in computer science. Focusing mostly on artificial intelligence, cybersecurity, and data science, it lasts between two and four years, depending on whether you study full or part-time.
Key Features:
- Dual degree option available
- Accredited according to European standards
- Entirely flexible
To enter this program, you’ll need to provide a computer science-focused undergraduate degree from a recognized institution. English proficiency will also be mandatory. The monthly tuition fee is €278 for full-time, €209 for part-time (three years), and €165 for part-time (four years) students.
2. University of Essex – MSc Computer Science
This two-year program by the University of Essex starts by examining the theoretical fundamentals. Then, it allows you to choose a specific field of focus and study it in detail through lectures and practical applications.
Key Features:
- BCS accreditation
- Tuition fee covers learning tools like programming languages
- Suitable for students from a different background
You can apply for this program with an undergraduate degree or if you’ve worked in a relevant field for a minimum of three years. English language qualification is acceptable from IELTS or a similar school. If lacking such qualifications, the University of Essex also lets you take a free online test. The tuition fees are £12,167 for UK and £12,428 for international students with possibilities of scholarships and discounts.
3. MIA Digital University – Master in Computer Science – Cybersecurity, Data Analytics, and Artificial Intelligence
Based in Barcelona, Spain, the MIA Digital University offers a computer science program that tackles some of the most requested profiles in the industry. You’ll learn about the latest developments in cybersecurity, data analytics, and AI, as well as how to apply them in practice. The program lasts for one year.
Key Features:
- Dual degree with Universidad a Distancia de Madrid (Udima)
- Student internships offered
- Heavily project-based
Application for this program will require a previous degree, which doesn’t have to be from the computer science field. You’ll also need to submit a resume or CV and a valid ID. The price of the program is €3,900, with scholarships available.
4. BTH Sweden – Master’s Program in Software Engineering
Somewhat more specific than other programs on the list, this MSc focuses on software engineering. However, the program also leans heavily into data science, machine learning, and AI. For that reason, you may view it as a computer science program with an emphasis on software engineering. The program is two years long.
Key Features:
- Mixed-time structure
- Work in groups and individually
- Based on leading software engineering research
To apply for this program, you’ll need a BSc degree in Engineering with a minimum 15-credit degree project. Professional experience of no less than two years in software development is also required, preferably with programming involved. The program doesn’t have a tuition fee for UK students, while others will need to pay SEK 60,000 for each semester.
How to Apply for an Online Masters in Computer Science Program
Precisely how you apply for an online masters computer science program will depend on the institution. There’s no universal application process, but you can keep certain guidelines in mind.
First, get detailed information about the requirements. Most master’s programs will require previous education in the field, although some may accept provable work experience instead of a degree.
Certain programs will also ask for a letter of recommendation and statement of purpose. But even if these documents aren’t requested, including them in your application will usually be a plus. Also, online MSc computer science programs are commonly held in English, so you’ll need a level of language proficiency and the appropriate certification.
Learning all of the relevant information in time and getting your documents in order will be pivotal. The last thing you’d want to do is miss out on a program by submitting an incomplete application. Additionally, you’ll have the greatest chances of success if you apply for a program with requirements you’re certain you’ll meet.
Every program will have specified deadlines and dates for application, interviews, covering the fees, and enrollment. Naturally, missing those dates would likely result in you not being accepted, so do your best to stay on track.
Career Prospects for Graduates of Online Masters in Computer Science Programs
Computer science graduates have plenty of options in the job market. Experts in this field are needed in various industries, including finance, IT, healthcare, and commerce.
Depending on your specialization, you could work in programming, database management, cybersecurity, robotics, network engineering, etc. The average base yearly salary for a computer science MSc graduate is €56,000. Of course, this will vary widely depending on your field of expertise, industry, and experience.
Your online masters computer science degree will also allow you to continue your education. You can move forward to different specializations, either in a particular field or interdisciplinary. In addition, an MSc may make you eligible for a PhD program, if you’re interested in further academic progress.
Complete an Online MSc Computer Science Program and Start a Rewarding Career
Choosing an online MSc computer science program that fits your goals can be an immensely valuable career and educational move. This degree will give you an advantage in the job market and help you hone your professional skills. Plus, enrolling in a postgraduate program will create networking opportunities that may be of great importance.
If getting an MSc in computer science sounds enticing, there’s no reason not to start working on it right now. Research the programs that suit your needs and don’t hesitate to apply. You’ll be making a worthwhile step in the right direction.
When artificial intelligence (AI) first emerged, it was perceived as nothing more than a gimmick, an exciting sci-fi idea with no practical applications. It took a few decades to dispel these misconceptions. Still, considering the importance of AI today, they’re definitely ancient history.
Since AI aims to simulate human intelligence processes like learning, reasoning, and creativity, it has found its way into numerous industries that rely on these skills to prosper. Healthcare, retail, security, and finance are just some industries that have experienced the benefits of AI firsthand.
As AI permeates more and more of everyone’s daily lives, the need for highly skilled AI professionals is only growing. And if you are to take on a new career, AI is the way to go. This lucrative field offers seemingly endless job opportunities and a unique chance to shape the world’s future.
If you’ve been eyeing the AI career path for a while, an AI certification course can help you get the hang out of the basics and enter this field with a bang. Even if you have experience with AI, there’s always something new to learn.
Whatever the case, you’ll learn something valuable from each AI certificate course on this best-of list.
Benefits of AI Certification Courses
An AI certification course is an excellent way to immerse yourself in this technology and earn a helpful certificate in the processes. And that’s only the beginning. Check out some of the most appealing benefits of completing one of these courses.
Enhancing Career Prospects
Considering the ever-growing power of AI, it isn’t surprising that your prospective employers are some of the biggest tech companies and market disruptors. Google, Amazon, Microsoft, and Apple are just some tech giants looking for employees well-versed in AI.
On top of that, getting certified in AI opens up a world of possibilities in terms of job prospects. Sure, you can be an AI engineer. But with these skills, you can also pursue a career as a data scientist, software engineer, machine learning engineer, and more.
Staying on Top of the Latest AI Trends
The AI field is constantly up to something new. Just when you think you’ve got it all figured out, a new AI craze appears and takes the world by storm. Taking the latest AI certificate course will allow you to stay on top of these trends and even stay ahead of them.
Gaining a Competitive Edge in the Job Market
The demand for AI doesn’t show any signs of slowing down. As people catch on, the field gets increasingly crowded by those seeking a sizeable paycheck. But being self-taught and getting certified in the field are worlds apart.
With an AI certification course under your belt, your career prospects will look much better. Potential employers will perceive you as a worthy candidate from the get-go. Throw some hands-on experience into the mix, and your competitive edge will be off the charts.
Improve Problem-Solving and Decision-Making Skills
AI is all about tackling complex cognitive processes, such as problem-solving and decision-making. So, through learning the AI methodology, you’ll also work on these skills. And the best part is that these skills can benefit you in solving real-life problems and in other fields far beyond AI.
Top AI Certification Courses
If you’re keen on taking an AI course, you’ll have many choices online. Just search the words “AI certificate course” and see for yourself. However, only some courses you encounter will help you achieve your goals. To help you avoid wasting time and money, here are the top three AI certification courses and all the necessary information about them.
1 – IBM Applied AI Professional Certificate
If you’re new to AI, this is the AI certificate course for you. This beginner-friendly program will ease you into the world of AI, teaching you all the terms you’ll need to navigate this field.
But don’t worry, that’s just the beginning. Afterward, you’ll dive into the practical portion of the course and learn how to build AI-powered tools, create virtual assistants, and apply computer vision techniques.
During this program, you’ll explore the following concepts and tools:
- Data science
- Machine learning
- Natural language processing
- Image classification and processing
- IBM Watson AI services
- OpenCV
- APIs
At a pace of 10 hours a week, you’ll need about three months to complete this AI certificate course. Plus, you’re free to adjust this schedule, as the course is entirely self-paced.
As for the fee, you can use Coursera’s free seven-day trial to start. Once those seven days are up, you’ll be charged $39 (a little over €36) monthly to continue studying.
Complete the program, and you’ll earn an employer-recognized certificate from IBM demonstrating your technical proficiency in AI.
2 – Artificial Intelligence A-Z
You might be interested in this AI certificate course if you already have some basic Python knowledge. You’ll start with fundamental AI concepts but quickly move on to hands-on experiences. Learning how to make a virtual self-driving car, creating an AI to beat games, and solving real-world problems with AI are just some practical skills you’ll learn here.
As the name implies, this course will take you from a beginner to an expert in specific AI skills. To achieve this, you’ll need to go through 17 hours of on-demand video lessons, 20 articles, and three additional resources.
For a $99.99 fee (a little over €93), you’ll gain lifetime access to this course’s contents and receive a shareable certificate.
3 – Artificial Intelligence Engineer (AIE) Certification
Learners wanting to earn official certification in the AI field should look no further than this AI certification course. This course’s tagline is “The Qualification that Matters,” and it’s entirely true. After all, this course and the ensuing certification exam are offered by the Artificial Intelligence Board of America (ARTiBA), the world’s leading AI certification body.
This AI certification course functions differently than other courses on our list. The main difference is that you take a certification test after completing the learning portion.
The curriculum for this course includes the following topics:
- Machine learning
- Regression
- Supervised and unsupervised learning
- Reinforced learning
- Neural networks
- Natural language processing
- Cognitive computing
- Deep learning
As you can see, this AI certification course leaves no stone unturned. But don’t let the complexity of the course scare you. Think of it as a path to acquiring highly sought-after skills and job-ready capabilities that will propel your career in AI forward.
The entire program costs $550 (close to €513). Once you pay the fee and register, you’ll have 180 days to master the learning materials and prepare for the AIE certification exam.
Factors to Consider When Choosing an AI Certification Course
Exploring more AI courses beyond these top picks may seem enticing. But before you make a final decision, consider these factors when choosing your next AI certificate course.
Course Content and Relevance
Before starting your search, take some time to assess your current career goals. What AI field interests you the most? What skills do you lack for your dream job? Think of these and similar questions and clearly define what you want to get out of the AI certificate course.
Once you do this, it’s only a matter of determining whether the course’s curriculum is relevant to your career path. Check the course’s description and see if it covers the topics you’re interested in. If it does, it passes the first elimination round.
Course Duration and Flexibility
The next factor is how well your chosen AI certificate course fits your lifestyle. If you’re a student, great; you probably have more wiggle room in your schedule. But you’ll have to find something more flexible if you’re already working and looking to switch fields or improve your AI skills.
The course’s description will also help you in this regard. Check how long the course lasts, whether it’s self-paced, and how much time you must devote to it weekly. Only start the course if you can fully commit to it.
Course Provider’s Reputation and Industry Recognition
As important as the course’s content is, ensuring it comes from a reputable organization is also crucial. Universities like MIT and Harvard are a great way to go. Of course, you should also consider recognized names in the AI industry (Google, IBM, Microsoft, etc.)
Sure, an AI certification course from these institutions looks better on your resume. But you can also rest assured that the content you’ll learn is high-quality, accurate, and up-to-date.
Cost and Return on Investment
You can find plenty of free AI courses on the internet. But if you want the best of the best (and receive a certificate at the end), be prepared to pay a course fee. Take one look at these fees online, and you’ll see prices ranging from €30 to thousands of euros.
But be careful, as the more expensive courses aren’t necessarily better. What makes a high price tag worth it is a whole set of course features. So before paying any fee, research whether the knowledge, support, and certificate you’ll receive will secure many job opportunities in the future.
Master AI and Transform Your Future
With a high-quality AI certification course under your belt, there’s no stopping you in the computer science field. Choose your courses wisely, and you’ll always stay ahead of the competition in the job market.
Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on enabling computers to “think” for themselves. Of course, they owe this thinking to humans (data scientists and ML engineers) who continuously supervise ML algorithms and models.
So, there’s no AI takeover (for now at least), just incredible ways to propel several industries forward by automating repetitive tasks, extracting valuable insights from data, and improving decision-making processes.
But how do humans precisely communicate with computers in machine learning?
The answer is through programming languages.
One programming language stands out among the rest for its simplicity and versatility. By the title of this guide, you can already guess we’re talking about Python.
This beloved programming language is all over the machine learning field, so mastering it gives you a great head start in the industry.
With this in mind, let’s examine how you can learn Python for machine learning courses. If you already have some basic knowledge of this programming language, don’t worry. We’ll also mention a great machine learning Python course to take your knowledge to the next level.
Factors to Consider When Choosing a Python for ML Course
Do a Google search for “machine learning Python course,” and you’ll be met with dozens of web pages that promise a sound understanding of this programming language. However, you’ll find the best course for your needs if you can identify those needs first.
Course Content and Curriculum
Your chosen course’s curriculum is arguably the most important factor for selecting the perfect machine learning Python course. One look at the listed topics, and you’ll know whether the course is right for you.
Let’s take your previous experience with Python as an example. If you have none, a course that jumps straight into machine learning algorithms without covering the Python basics will obviously not work for you.
Instructor’s Expertise and Experience
What bridges the gap between struggling to comprehend a complex subject and feeling that nothing can stop you in your learning journey? The answer is simple – a good instructor.
Before committing to a course, check who teaches it. Find out the instructor’s background with Python and whether they have enough expertise to guide you through this programming language’s intricacies.
If their bio checks all the boxes, watch at least one of their lectures. It doesn’t hurt to check whether their teaching style and voice suit you, as these can also make or break your learning experience.
Course Duration and Flexibility
Most online courses are self-paced, allowing you to create your own schedule. Fixed-timing courses also have their benefits, though. They’re usually instructor-led, so you can use the opportunity to ask questions and receive clarification as you learn the material.
As for duration, the course’s description typically indicates how long the course lasts and the recommended pace. Before starting, make sure you can commit to the course from beginning to end. Otherwise, you’re just wasting time and gaining incomplete knowledge.
Hands-On Projects and Real-World Applications
Programming languages are inherently practical, so ensure that your chosen course features hands-on projects and practical examples. Sticking solely to theory will do little to prepare you for what’s waiting in the real world.
Course Reviews and Ratings
You probably check reviews before going to a new restaurant, renting an Airbnb, or purchasing clothes online. So why should shopping for online courses be any different? When a course piques your interest, check how other learners have rated it. But don’t stop at glancing at the average rating. Read through some reviews to ensure they aren’t fake and to get a better picture of the course’s quality.
Pricing and Value for Money
There are plenty of free machine learning resources online. But the more advanced courses and certificates usually come with a fee. And that’s perfectly understandable. What’s not understandable or acceptable are courses that charge ridiculously high fees yet offer little value. To avoid wasting money (and probably time), check whether the course’s price is justifiable by its duration, level, type, and provided support.
Top Python for ML Courses Reviewed
Here are our favorite Python courses primarily focused on machine learning. We’re positive you’ll find the perfect machine learning Python course, whether this is the first time you use this programming language or want to master this skill.
Python for Machine Learning
The Python for Machine Learning course on Great Learning is a great place to start your Python-learning journey. This course is beginner-friendly and relatively short, so you won’t get overwhelmed from the get-go.
This course focuses on three Python libraries: NumPy, Pandas, and Matplotlib. It guides you through the basic concepts (arrays, intersection, loading, etc.) and then moves on to more complex functions. At the end of the course, you take a quiz. Pass the quiz, and you’ll get a certificate of completion.
Applying for this course is free. Not only that, but you’ll also receive free lifetime access, so you can revisit the course whenever you’d like. Although, some learners believe that there’s little to revisit. In total, this course lasts for 90 minutes. Those who are serious about Python learning will probably need more than this.
Still, you can view this course as a beginner’s guide and move to more advanced lessons afterward. To apply, you only need to create an account on the platform and send an enrollment request.
Machine Learning A-Z: AI, Python & R
If you want to start with the basics but cover the more advanced stuff within the same course, this Udemy’s gem is for you. It covers another programming language besides Python, R. However, this won’t be an issue, as you can focus solely on Python.
The course is broken into 10 parts, with over 40 hours of on-demand videos. Each section (and even the lessons within them) is separate, so you can choose to complete the ones that will benefit you now. Start with data preprocessing, and work toward machine learning model selection.
Those seeking practical exercises in Python will love this course. However, you might need to research some notions independently, as not all lecture sections are explained in great detail.
You can purchase lifetime access to this course for $89.99 (a little over €83). The price includes a certificate of completion and several additional learning materials (articles and downloadable resources). Complete the purchase to apply for this course.
Machine Learning With Python by IBM
IBM is one of the leading companies in the machine learning field, so you should take advantage of every chance to learn from its experts. If you’re just gaining your footing in machine learning, you’ll cover all your bases with this offering.
It will take approximately 12 hours over four weeks to complete the coursework. After each lesson, you’ll get a chance to put your newly-learned knowledge to the test.
One thing to keep in mind is that this course focuses more on machine learning using Python than the programming language itself. So, if you’ve never worked with Python, an additional resource or two might come in handy.
You can use Coursera’s 7-day trial to enroll in this course. Afterward, you’ll be charged $39 (approximately €36) a month. The same fee is a must if you want to receive a certificate.
The Complete Machine Learning Course With Python
Are you a data scientist in the making looking to build a solid portfolio with Python? If yes, you’ll love this course. You can find it on Udemy, just like millions of learners before you. This number might surprise you at first. But once you see that one of the founders of this course is Andrew Ng, a thought leader in machine learning, it will make much more sense.
In 18 hours, this course covers all the basics of machine learning with Python. But there’s a catch. You’ll need at least basic Python programming knowledge to keep up.
If this isn’t an issue, create an Udemy account and pay the $59.99 (around €55.50) fee to apply. Lifetime access and a certificate of completion are included.
Programming for Everybody (Getting Started With Python)
While not focused on machine learning per se, this course is necessary for anyone who has yet to work with Python. Pair it with one of the other courses on our list, and your success is guaranteed.
As the name implies, this course covers all the basics. It is designed to allow virtually anyone to follow, regardless of their skills. The simplest math is all you need.
You’ll also need 19 hours to complete this course offered by the University of Michigan. However, the instructor snuck a couple of non-Python-related stories into those 19 hours, which some learners didn’t like.
If you don’t mind a break here and there, join this course on Coursera for free or $49 (a little over €45) if you want a certificate.
Additional Resources for Learning Python for Machine Learning
Perhaps you can’t get enough of learning about Python. Or you find Python for machine learning courses lacking information. Whatever the case, you can find additional resources (both online and offline) to help you master this programming language. Check out some of our favorites:
- Books and e-books: “Python for Data Science, for Dummies,” “Introduction to Machine Learning with Python: A Guide for Data Scientists,” “Python Data Science Handbook: Essential Tools for Working with Data”
- Blogs: Planet Python, Real Python
- YouTube channels: IBM Technology, Google Career Certificates, techTFQ
- Community forums and discussion groups: Kaggle Discussions, Reddit (r/learnpython)
The Path to Python
As you can see, there’s no shortage of Python for machine learning courses, even hosted by some of the biggest names in the industry. Take one of the listed courses or combine them; the choice is all yours. All that matters is that you ultimately master this programming language and crush any data science career you choose.
If these courses aren’t enough to quench your thirst for knowledge, a Bachelor’s in Modern Computer Science will definitely do the trick. With it, you can learn all the ins and outs of Python and machine learning in general.
If we think of “computer science” as an umbrella term for so many aspects of computing today, its importance is immediately apparent. Artificial intelligence (and the programming that lies behind it) falls into the computer science category. The same goes for machine learning, data science, networking, cybersecurity, and so many other elements of what make modern computing technology tick.
You need a solid grounding in computer science – both general concepts and theory – to move into one of these areas of specialization. And if you need to get that grounding on a budget, these free computer science courses teach you what you need to know and come with a handy certification.
Top Free Certified Computer Science Online Courses
As surprising as it may seem, you don’t have to pay money to get an education in computer science that employers actually care about. Free courses exist. And many of these free online computer science courses deliver a certification that proves your knowledge and comes from an institution that employers respect.
Course 1 – CS50: Introduction to Computer Science (Harvard University)
We’re stretching the definition of “free and certified” with the first course on the list. Though it’s free to take (and you get an audit of your performance without paying a penny), the verified certification for Harvard’s CS50 course costs $189 (approx. €175).
Assuming you’re willing to part with the cash, this course gives you a certificate from one of the United States’ most respected institutions, in addition to a crash course in computer science fundamentals. Over 11 weeks of self-paced learning (you’ll need to commit at least 10 hours per week to the course) you’ll develop a fundamental understanding of computer science and the programming that underpins it.
Concepts covered include data structures, abstraction, web development, and algorithms, creating a course that melds the math of modern computing with the theoretical concepts you’ll apply in the real world. Prospective programmers enjoy some diversity, too, as the course teaches the basics of several languages. Python, C, JavaScript, and HTML are all covered, though not in enough detail for you to achieve mastery in any of them. Still, as online certified courses for computer science go, CS50 delivers a prestigious certificate and exposes you to ambitious peers who may offer networking potential beyond the course content.
Course 2 – CS50’s Computer Science for Business Professionals (Harvard University)
It’s hard to look beyond Harvard when it comes to free computer science courses because you’re getting education and certification from a top university. With CS50 Computer Science for Business Professionals, Harvard moves beyond the tech-centric approach of its usual CS50 course to demonstrate how computer science principles apply in a real-world setting.
It’s a short course, clocking in at six weeks of study and only requiring two-to-six hours of work per week. That makes it perfect for professionals who want to boost their knowledge without a full-time commitment. You’ll tackle more high-level concepts in computer science, including the fundamentals of cloud computing and how to build technology stacks. All of which makes this like a speed run through of what you need to know about computing on a business level.
That’s not to say you won’t learn any technical theory. Several programming languages are covered (albeit in short-form style), as are the basics of computational thinking. But like CS50 above, certification comes at a cost, even if the course itself is free. Paying for an optional upgrade with EDX (through which the course is offered) is the only way to nab your certificate, if you do get a free course audit to demonstrate completion regardless.
Course 3 – Introduction to Computer Science and Programming Using Python (Massachusetts Institute of Technology)
Offered in conjunction with the EDX platform, this computer science online course takes a Python-focused approach to its teaching. Unlike CS50, which covers a wide range of topics in brief, MIT’s course focuses on how computer science is like a tool that you can use to create software and algorithms. Python 3.5 is the technology behind that tool and you’ll learn how to use it by examining and analyzing real-world problems.
The nine-week course starts by demonstrating the basics of Python (some self-learning and expansion of these concepts may be required) before moving into algorithms. Once you’ve gotten to grips with basic algorithm creation, you’ll learn how to test what you create and how those algorithms become the building blocks of complex data structures.
You have to make a substantial time commitment with this course, with MIT requiring you to spend at least 14 hours per week on your studies if you wish to stick to the nine-week schedule. And though effective in teaching you the basics of Python, the course is really a primer for a second MIT course – Introduction to Computational Thinking and Data Science – that requires payment. But it’s a useful course as a standalone product, but you’ll have to pay a fee to EDX if you want a course-centric certificate.
Factors to Consider When Choosing a Free Certified Computer Science Online Course
The trio of free online computer science courses discussed above each offer something different. Depending on your choice, you’ll get a bottom-up crash course in the theory, a practical understanding of how computer science works in a business context, or an in-depth guide to using Python. But when choosing between the three courses above (or any other courses you find) you must consider the following factors.
The Course Content and Its Relevance to Your Goals
The big question here is – what do you want to achieve with the course?
Sure, having a certificate, especially one with a major university’s name on it, is nice. But if that certificate demonstrates that you’ve learned skills that you don’t need for your intended career path then it’s not worth the paper it’s printed on.
Think of choosing a course like making an investment on which you expect a return. Outline your goals – both learning-centric and career-based – for taking the course. Then, find a course that helps you to reach those goals through laser-focused learning on topics you’ll use in the future.
Course Duration and Flexibility
For a young learner without full-time work or family commitments, taking on a computer science online course that requires months of study may not be a big deal. But that’s not the case for everybody. If you have limited hours available during the week, you need a course that you can fit into those hours rather than one that forces you to fit your life around the course.
Thankfully, most free online computer science courses make allowances for schedule flexibility by taking a self-paced learning approach. You’ll get access to all of the course resources upfront, allowing you to choose when you study. You may be able to get ahead during one week in preparation for a week where you know you can’t commit as much time, giving you the flexibility you need to fit the course into your schedule.
The Instructors and Their Expertise
Would you want to learn the theory of how to pilot a plane from somebody who’s never been up in the air? Of course you wouldn’t, and you must adopt the same attitude when choosing a computer science course.
Check the faculty list associated with the course (most reputable courses tell you who created them) and dig into their individual credentials. What have they done in the computer science industry? Where did they learn what they know? The answers to these questions tell you if your instructors and, by extension, your course are credible.
The Value of the Certification
When it comes to certification, look beyond the website that offers the course and instead focus on the institution that created it. For example, CS50’s Computer Science for Business Professionals is offered via the EDX platform, which doesn’t mean much to potential employers. But that certificate comes with a stamp of approval from Harvard University, which is a school that’s going to immediately raise eyebrows if it’s on your CV.
The point is that reputation matters, though it’s the reputation of the course creator that matters above that of the course platform. The more prestigious the name on the piece of paper, the more valuable the certificate is in the eyes of employers.
Tips for Successfully Completing a Free Certified Computer Science Online Course
With the tips for sifting through the sands of free computer science courses established, let’s round things off with some quick tips that’ll help you succeed in your studies:
- Set clear goals for your education from the outset, with those goals aligning with your current experience level and desired outcomes.
- Create a study schedule that fits around your commitments and stick to it as closely as you can.
- Don’t skip assignments or practical sessions because everything included in the course is there to teach you something valuable.
- Engage with the course community both to get advice from your peers and to potentially create networking opportunities.
- Dedicate time to revision and research when preparing for exams or practical assessments to ensure you fully understand the course content.
Get Certified for Free and Improve Your Job Prospects
Given the importance of computer science to modern business – even the simplest of companies use software and have networks – it’s reasonable to want to build your knowledge of the subject. Free online computer science courses allow you to do that in exchange for a time commitment, with many allowing you to inject some flexibility into your study schedule.
Explore the three courses highlighted here, and look beyond them to more specialized courses once you’re confident in the foundational knowledge you’ve built. And remember – even a certificate from a free course has value in the job market if that course was created by a recognized institution.
As a well-known programming language, Python dominates the data science field. Its prominence in the industry represents the main reason why so many job offers include Python skills as a hard requirement.
Of course, all of the hype around Python has practical ramifications. This programming language is suitable for people without a programming background. If you have a sufficient grasp of technology, chances are you’ll get how Python works in a few weeks.
Besides being beginner-friendly, Python is practically built for math and statistical analysis. Plus, data visualization becomes nearly effortless when you use specific Python libraries dedicated to the task.
The point is that Python makes numerous data science tasks and operations easier. If you’re interested in data science, learning this versatile programming language will take your professional development to a new level.
Fortunately, you can find plenty of courses teaching everything from the basics to advanced functions in Python. Let’s look at the best Python data science tutorial and course options.
Factors to Consider When Choosing a Python Data Science Course
Before you start a particular course, it would be best to consider the specifics. The criteria that should guide your decision include:
- The content of the course: Some courses will be introductory, while others will offer advanced lessons. You should start with a course that aligns with your proficiency level.
- Instructor’s expertise: Ideally, you’ll want an industry expert to teach you about Python. Experienced lecturers or proven professionals will know all of the ins and outs, and they’ll be able to transfer that knowledge to you.
- Course duration and flexibility: If you’re looking for a course, you don’t want an experience that will last an entire year. On the other hand, you shouldn’t expect too much from an hour-long course. Additionally, the course structure should be flexible enough to allow you to complete it at your own pace.
- Practical projects and applications: Python is a living programming language that sees plenty of use in the real world. On that note, the course you take should offer a hands-on experience and show you how to apply your new knowledge in practice.
- Course reviews and ratings: Although this shouldn’t be your primary clue when making a decision, taking a look at what others say about the course certainly won’t hurt. You’ll want to stay away from courses with mostly negative reviews, especially if the reviewers make unsubstantiated claims.
- Pricing and value: Course pricing may vary from ludicrously expensive to free. While our list doesn’t include any outrageously overpriced courses, you’ll find a quality free one in there. The bottom line here is straightforward: Does the course fit in with your budget and what do you get for the price?
Top Python Data Science Courses and Tutorials
ILX Group – Python E-Learning
This Python data science course deals with the basic functionality of the programming language and teaches you how to apply it in practice. It contains in-depth information about command running, dictionaries, methods, and shell scripting. No final exam is necessary to complete the course.
Key Topics
- The basics of Python programming
- File and data operations
- Logging and test infrastructure
- Conditional statements
- Networking
- Shell scripting
- Django web framework
Instructor’s Background
Information about the instructor for this course isn’t available on ILX Group.
Course Duration and Format
The course is in e-learning format and is delivered entirely online. It will take you about eight hours to complete. Instead of a final exam, you’ll complete the course by submitting the required project that must meet specific set criteria.
Pricing and Enrollment
Enrolling in this course will cost €450 +VAT. You won’t need to fulfill any additional requirements to make a start. Paying the one-time fee will grant you a full year of access to the course resources.
Pros
- Provides a solid foundation for Python programming
- No limitations on enrollment or availability
- Offers practical knowledge and projects
Cons
- E-learning tools used throughout the course aren’t defined
- No information about the instructor or their credentials
Python Institute – Data Analysis Essentials With Python
The Python Institute is a group devoted to Python education. The Data Analysis Essentials with Python is only one of the courses this institution provides. It’s an intermediate-level program focused on data analysis using the tools within the Python programming language.
Key Topics
- Data analysis
- Algorithmic and analytical thinking
- Data visualization
- Statistics
- Data mining and modeling
- Programming
- Data-based decision-making
Instructor’s Background
No instructor information can be found on the Python Institute site regarding this particular course. However, it’s worth mentioning that the institute is run by industry experts with substantial experience in the IT sector. These experts are also responsible for the institute courses.
Course Duration and Format
The Data Analysis Essentials with Python course will last for up to six weeks, provided you devote about eight hours weekly to studying the material. The course is delivered online.
Pricing and Enrollment
One of the greatest advantages of this course is its pricing: Data Analysis Essentials with Python is completely free. However, this course isn’t for beginners. You’ll need previous knowledge of the key concepts in Python programming. The Python Institute recommends completing their beginner courses or coming into this program with some experience.
Pros
- Course designed by industry professionals
- Free for all users
- May serve as a preparatory course for Python Certified Associate in Data Analytics (PCAD) certification
Cons
- No information about the lecturer
- Exact delivery methods aren’t specified
Python-Course – Fundamental Python Course
The Fundamental Python Course is designed as a comprehensive introduction to programming methods in Python. The course will take you through the fundamentals of the programming language and include practical solutions in the Python environment.
Key Topics
- Python introductory lessons
- Script editing and execution
- Working in the Python shell
- Expressions, operators, assignments, and variables
- Dictionaries, stacks, loops, and lists
- Handling files and exceptions
- Conditional statements
- Packages and modules
Instructor’s Background
The instructor for live courses is Bernd Klein. A Python expert with a Saarland University diploma in Computer Science, specializing in computer languages, Klein has taught at the Saarland University, EWH, Koblenz, and the University of Freiburg, where he still holds a teaching position.
Klein is also the founder of the programming language teaching platform, Bodenseo.
Course Duration and Format
The course lasts for five days and includes a live class format. While Klein usually holds classes in person, courses are currently provided online. To participate on this course, you’ll need a network-ready computer with a microphone. No additional software is needed.
Pricing and Enrollment
The on-site variant of the course costs €1,450 per day, while open classes start from €349 daily. There are no other requirements for the course.
Pros
- Taught by an experienced lecturer
- Offers a complete coverage of Python-related subjects
- Advanced optional topics
Cons
- Very pricey compared to the competitors
- Doesn’t provide a certificate
Additional Resources for Mastering Python Data Science
If you want an alternative to an actual Python data science course, you may wish to turn to other resources that will help you master the subject. In particular, these would be books and digital resources like forums, eBooks, podcasts, YouTube channels, websites, and blogs.
For some of the best Python forums and online communities, check out the following:
- Python org forums
- StackOverflow Python forum page
- FreeCodeCamp Python category
Great books on Python include:
- Head-First Python, by Paul Barry
- Think Python, by Allen B. Downey
- Learn Python 3 the Hard Way, by Zed A. Shaw
- Python Crash Course, by Eric Matthes
If printed media isn’t your style, you can find an excellent list of free Python eBooks on Codeburst.io.
On the other hand, you might not want to read too much while learning Python. In that case, you’ll be glad to learn that there are numerous podcasts on the subject that you can tune in to right now:
Unsurprisingly, YouTube also has plenty of Python data science course and tutorial channels. Here are our top picks:
- The New Boston
- Sentdex
- Real Python
- PyCon – This isn’t a particular YouTube channel, but rather a search query. Browse the search results on YouTube, and you’ll find videos for Python-dedicated conferences from around the world.
- Michael Kennedy
Finally, there’s an abundance of blogs and websites dedicated to Python resources and knowledge:
- Python Blogs
- The PyCharm Blog on Jet Brains
- The Invent with Python Blog
- The Python Library Blog
- Finxster
Learn to Program in Python Like a Pro
The internet is full of quality Python data science tutorial and course pages. You can find free and premium resources to hone your skills in the programming language or get familiar with the fundamental concepts.
Whichever resource type you choose, rest assured that learning practical Python skills will be a valuable addition to your resume. After all, data science is a constantly developing field in which expanding your knowledge base and skillset can only be a huge plus. If you’ve found a program you like in this article, don’t hesitate to jump right into it and expand your horizons.
Imagine that you own a business that has thousands of customers. You have data on every one of these customers, ranging from basic contact information to data about their purchasing habits. What you have is a huge dataset, and you want to extract information from that dataset in the form of patterns and insights with which you can make decisions.
You’d need a data scientist.
Data scientists specialize in shining a spotlight on the most important insights found in large datasets. They use a range of tools – from complex algorithms to artificial intelligence – to make that spotlight shine brighter. And in a world of Big Data, the data scientist’s role is more important now than ever. With these six courses, split between beginner, intermediate, and advanced levels, you put yourself in a prime position to become the data scientist that so many companies need.
Best Data Science Tutorials for Beginners
Everybody has to start somewhere, and these data science beginner tutorial options are the ideal first step on your journey into the field.
Data Science Tutorial for Beginners (Java T Point)
If you’re looking for a succinct explanation of what data science is, what it involves, and how it applies in the modern world, Java T Point’s tutorial answers the key questions. It’s structured as a long-form article rather than a set of modules or lessons, but it’s well-organized and covers all of the key points in enough depth to make it a handy primer for the data science novice.
This data science tutorial covers a range of topics, from basic explanations of the components of data science to descriptions of the types of jobs available for those who enter the field. It also digs into some of the machine learning aspects of data science, such as decision trees, so you can see how AI ties into modern data science practices.
Granted, the fact that it’s not a traditional course means there’s no community underpinning the tutorial or certification for completion. But as a primer that gives you some foundational knowledge, it’s a superb starting point.
Data Science Full Course – Learn Data Science in 10 Hours (Edureka)
Offered via YouTube, this data science tutorial makes the lofty claim of being able to teach you all you need to know about the subject in 10 hours. While that isn’t strictly true (the more complex aspects are covered superficially), it’s still a great primer for those looking to build a solid foundation in the subject.
The tutorial is a great choice for visual learners, and it covers topics like data categorization, statistics, and the data lifecycle. Charts, graphs, and other visual learning tools abound, with the constant narration helping you to understand what you’re seeing on screen.
As a full 10-hour video, the tutorial could do with being broken up into separate lessons to make it easier to keep your place. But as long as you’re happy to record time stamps (or don’t mind the full 10 hours in one sitting), the course delivers plenty of useful information.
Best Data Science Tutorials for Intermediate Learners
After completing a few of the best data science tutorials for beginners, you’re ready to get your feet wet with intermediate courses that dig into the coding that underpins data science.
Data Science with Python Tutorial (Geeksforgeeks)
Python is the programming language of choice for data scientists, as evidenced by the fact that 69% of data scientists report using Python daily. It’s no surprise, either, as Python is an extremely flexible language that’s ideal for creating the algorithms needed in data science due to its vast range of libraries. The challenge you face is twofold – figuring out how to code in Python and understanding what libraries you need to confront common data science challenges.
Geeksforgeeks offers a data science tutorial that confronts both of those challenges and helps you see how Python applies to the data science field in a practical sense. Starting with a brief introduction to the data science field (the beginner-level tutorials in this list offer more depth), it then dives into everything you need to know about Python. You’ll learn about the basics of Python, such as functions and control statements, before moving into how you can use the language for visualizing data and creating machine learning models.
It’s a highly specialized tutorial, though it’s one that’s essential for prospective data scientists, given the popularity of Python in the field. Unfortunately, there’s no certification for completion. However, it’ll equip you with so much Python knowledge that you can feel confident moving into a more advanced study without worrying about your coding chops.
Data Science and Machine Learning Essentials (Microsoft via Udemy)
Like the above course, Microsoft’s offering covers Python, albeit in far less depth. However, it stands out because it also covers a couple of other languages used commonly in data science – namely R and Azure Machine Learning. As a result, the course is an excellent choice for intermediate data scientists who want to get to grips with the main three programming languages they’ll likely use in the field.
It’s a five-week course, with Microsoft recommending between three and four hours of learning per week, and it’s delivered in English. Each weekly module is capped with a quiz that tests your knowledge. The modules cover everything from data science basics to creating machine learning models in Azure Machine Learning.
Of course, the biggest benefit of this course (aside from the content) is the Microsoft-approved certification you get at the end. Any employer who sees Microsoft on your CV will sit up and take notice. Still, you’ll need to build on what you learn here with a more advanced data science tutorial, ideally one that covers more real-world applications of working with data.
Best Data Science Tutorials for Advanced Learners
Once you’re secure in your foundational knowledge and you have a good idea of how to apply data science practices, you’re ready to step into a more advanced data science tutorial. Here are two options.
Data Science Tutorial – Learn Data Science From Scratch (DataFlair)
Think of DataFlair’s main data science tutorial page as a hub world in a video game. There are dozens of different directions in which to take your studying, and you’re in complete control of where you go and what you learn. The page hosts over 370 tutorials (free of charge) that cover everything from the basics of data science to using data mining and Python to parse through massive data sets.
The sheer depth of coverage makes this set of tutorials ideal for the advanced learner. The more basic sides of the course can fill in any knowledge gaps that weren’t covered in previous tutorials you’ve taken. And on the more advanced side, you’ll be exposed to real-world examples that show you how to apply your theoretical knowledge in a practical environment. There’s even a set of quizzes that you can use to test your understanding of what you read.
There are some drawbacks, namely that this data science tutorial doesn’t offer a certificate and is less interactive than many paid courses. However, self-paced learners who thrive when presented with pages of theoretical knowledge will find almost everything they need to know about data science in this collection.
MicroMasters® Program in Statistics and Data Science (Massachusetts Institute of Technology)
By the time you’re at the advanced stage of learning data science, you’ll probably want an official certification to take pride of place on your CV. This mini-Master’s degree comes from the Massachusetts Institute of Technology (MIT), which is one of the world’s leading technology and engineering schools.
The course lasts for one year and two months, with between 10 and 14 hours of study required per week, making it a choice only for those who can commit to a part-time consistent learning schedule. It’s also not a free data science tutorial, as you’ll have to pay £1,210 (approx. €1,401) for the program.
If you can vault those hurdles, you get a graduate-level course that teaches you how to develop the machine learning models used in modern data science. Plus, having the letters “MIT” on your course certification (and the networking opportunities that come with learning from some of the institutions leading professors) makes this course even more valuable.
Find the Best Data Science Tutorials for Your Skill Level
Whether you’re taking your first tentative steps into the world of data science or you’re an advanced learner looking to brush up your skills, there’s a data science tutorial out there for you. The six highlighted in this article represent the best data science tutorials available (two for each skill level) on the web.
Let’s close by answering a key question – why complete one of these tutorials?
Precedence Research has the answer, stating that the data science field will enjoy a compound annual growth rate (CAGR) of 16.43% between 2022 and 2030. Rapid growth means more job opportunities (and higher salaries) for those with data science skills. Use these tutorials to build your skill base before shifting your career focus to a field that looks set to explode as Big Data becomes more crucial to how companies operate.
Did you know that machines can learn, too, similarly to humans?
In machine learning, software applications can be trained to parse data, learn from it, and then make informed decisions based on their findings. This outcome prediction has proven to be invaluable in numerous industries, including IT (malware threat detection), healthcare (disease diagnosis and prognosis), manufacturing (business process automation), and finance (fraud detection).
The importance of machine learning in today’s technology-driven world can’t be understated. So, if you’re considering a career in data science, software engineering, or artificial intelligence (AI), this is the skill to learn.
Fortunately, learning this skill is now accessible to almost anyone. Just go online and find a machine learning course for beginners.
We’ve gathered our three favorites to help you narrow your search (and avoid wasting time on subpar courses). We aim to make it easy to select the perfect free machine learning course and crush it online.
Criteria for Selecting the Top Beginner-Friendly Online Picks
The internet offers seemingly endless learning resources. This is undoubtedly great news, as it levels the playing field for eager learners worldwide. But be careful; not all online resources will be valuable to you. Some will just waste your time.
So, how can you comb through the sea of content and find a course worth pursuing? By knowing precisely what you’re looking for, of course. Check out our selection criteria to track down a great online course.
Course Content and Structure
Most courses you find online will come with a description. The more detailed it is, the better. By carefully reading the description, you’ll better understand what the course covers and how it is structured.
These descriptions can sometimes read fluffy to get as many learners to apply. But try to look past the buzzwords and extract only the essential information – what the syllabus looks like, how many hours it takes to complete the course, and how the lessons are spaced.
If there are video lessons, check previews to ensure you’ll only work with high-quality video and audio outputs throughout the course.
Instructor Expertise and Teaching Style
If the course’s content is sound, it’s time to move on to the person (or people) who will present it to you. After all, anyone can read a bunch of words from a book. It takes an experienced and knowledgeable instructor to help you truly understand the learning material.
So, before signing up for the course, do a little research on the instructor. Check out their bio to learn about their expertise and experience in the field.
Beyond that, play a lecture or two to ensure their teaching style suits you. Having issues with the little things like their voice or body language can impact your concentration and, in turn, your success.
Platform Features and User Experience
Now that we’ve covered what you’re learning and who you’re learning it from, the only question is where the learning will take place.
Take a more in-depth look at the platform hosting your chosen course. Ensure it offers a seamless user experience, as glitches and downtime aren’t exactly ideal for a learning environment.
Also, the more exciting features the platform has, the easier it will be to stick to the course. Different learning material formats, interactive elements, discussion forums, and progress tracking are just some of the features that can significantly improve your learning experience.
Community Support and Resources
The lack of personal interaction in online learning can make you feel like you’re all alone. This can be incredibly challenging if you’re struggling with a lesson or a part of the course. So, when looking for the perfect online class, ensure you’ll get a chance to interact with other learners or even experts in the field.
Asking questions, sharing insights, collecting feedback, and receiving support and motivation should be a part of every learner’s journey.
Cost and Accessibility
If your chosen course checks all your boxes, don’t celebrate just yet. First, check whether you can access it and how much it costs.
Access can sometimes be limited by your country or device, so make sure nothing stands between you and learning online.
As for the cost, you’ll find plenty of high-quality courses free of charge. If there is a fee to pay, check whether you can purchase just the individual class or you have to subscribe to the platform. The latter approach is better for those who want to acquire multiple skills and work on their education long-term.
Top Beginner-Friendly Online Picks for Free Machine Learning Courses
Here are the top three beginner-friendly machine learning courses we’ve chosen based on the selection criteria above. Each one should help you learn the fundamentals of this field and how to use machine learning effectively as a skill.
Supervised Machine Learning: Regression and Classification by Andrew Ng
If you want to learn more about machine learning, why not consult one of its leading figures? That’s what you can do if you take this course. You’ll learn from Andrew Ng, a prominent computer scientist and a pioneer in machine learning and AI. All things considered, it’s no wonder this is probably the most popular free machine learning course online.
During this course, you’ll master the key concepts of machine learning (supervised and unsupervised learning and best practices) and learn how to apply them in practice. Some of the skills you’ll gain include:
- Linear regression
- Logistic regression for classification
- Gradient descent
- Regularization to avoid overfitting
This is one of the best beginner courses for entering the machine learning field. It offers abundant knowledge, a flexible schedule, and resettable deadlines. The only downside is that you must enroll in the entire specialization to receive a certificate upon completion.
Machine Learning Crash Course by Google
Google is a major disruptor in the AI industry. So, a free machine learning course offered by this tech giant is seriously a big deal. As the name suggests, this is a crash course, so expect a fast-paced and intense approach to machine learning.
Throughout 25 lessons, you’ll learn about specific machine-learning areas through video lectures from Google researchers, real-world case studies, written guides, and hands-on exercises.
The key topics this course covers include:
- A deep dive into neural networks
- The inner workings of gradient descent
- Model training and evaluation
- The importance of loss functions
The course is relatively short (15 hours) yet informative, so it can be an excellent choice for those pursuing machine learning while having a job. However, if you’re an absolute beginner, you’ll have to do some reading before starting the course, which some may view as a downside.
Practical Machine Learning With Scikit-Learn by Adam Eubanks
If you’re looking for something even shorter than Google’s Crash Course, you’ll love this course on Udemy. You’ll learn the most powerful machine-learning algorithms in a little over an hour. This course focuses on Scikit-Learn, a Python machine-learning library ideal for beginners.
Here are some of the algorithms this course covers:
- Linear regression
- Polynomial regression
- Multiple linear regression
- Logistic regression
- Support vector machines
- Decision trees
This is the perfect course for kick-starting your machine-learning journey. However, some learners might find it too limited in scope. Also, the course lacks interaction with the instructor, which might be a deal breaker for some learners.
Tips for Success in Learning Machine Learning Online
Imagine going through all the trouble of finding the perfect machine learning free online course, only to abandon it halfway through. There’s no judgment here, of course. We know how difficult it can be to persevere with learning outside the traditional classroom and school system.
So, here are some tips to help you complete a machine learning course for beginners triumphantly:
- Set clear goals and expectations. Before starting the course, remind yourself of why you’re doing it and how it fits your career development. Don’t just buy the course for the sake of buying it; these impulse purchases rarely translate to success.
- Dedicate consistent time for learning. Like with many things in life, consistency is key. But this time, there’s no one to keep you on track besides yourself. So, work on your self-discipline and commit to regular study sessions.
- Engage with the community and seek help when needed. Online learning can feel like an isolating experience. But it doesn’t have to, provided you’ve selected the right platform. If you ever feel stuck, don’t hesitate to seek help from the community. These simple interactions will help you stay motivated and focused.
- Apply learned concepts to real-world projects. As soon as you gain a fundamental understanding of machine learning, try to put this knowledge to practice. Seeing how the theory you’re learning sets you up for success is a great incentive to keep learning.
- Continuously update skills and knowledge. Are you done with the machine learning course for beginners? Great, it’s time to look for a more advanced one. Continuously learning and improving your skills is the only way to stay on top.
Considerable Knowledge at No Cost
You won’t make a mistake regardless of whether you put your trust in Andrew Ng or Adam Eubanks or go the Google route. What you will do is gain valuable knowledge about an even more valuable skill: machine learning.
If you want to master your knowledge of machine learning, consider pursuing a Bachelor’s degree in Modern Computer Science from the Open Institute of Technology. The syllabus includes two courses focusing on machine learning and numerous others that will skyrocket your career opportunities.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: