

The human brain is among the most complicated organs and one of nature’s most amazing creations. The brain’s capacity is considered limitless; there isn’t a thing it can’t remember. Although many often don’t think about it, the processes that happen in the mind are fascinating.
As technology evolved over the years, scientists figured out a way to make machines think like humans, and this process is called machine learning. Like cars need fuel to operate, machines need data and algorithms. With the application of adequate techniques, machines can learn from this data and even improve their accuracy as time passes.
Two basic machine learning approaches are supervised and unsupervised learning. You can already assume the biggest difference between them based on their names. With supervised learning, you have a “teacher” who shows the machine how to analyze specific data. Unsupervised learning is completely independent, meaning there are no teachers or guides.
This article will talk more about supervised and unsupervised learning, outline their differences, and introduce examples.
Supervised Learning
Imagine a teacher trying to teach their young students to write the letter “A.” The teacher will first set an example by writing the letter on the board, and the students will follow. After some time, the students will be able to write the letter without assistance.
Supervised machine learning is very similar to this situation. In this case, you (the teacher) train the machine using labeled data. Such data already contains the right answer to a particular situation. The machine then uses this training data to learn a pattern and applies it to all new datasets.
Note that the role of a teacher is essential. The provided labeled datasets are the foundation of the machine’s learning process. If you withhold these datasets or don’t label them correctly, you won’t get any (relevant) results.
Supervised learning is complex, but we can understand it through a simple real-life example.
Suppose you have a basket filled with red apples, strawberries, and pears and want to train a machine to identify these fruits. You’ll teach the machine the basic characteristics of each fruit found in the basket, focusing on the color, size, shape, and other relevant features. If you introduce a “new” strawberry to the basket, the machine will analyze its appearance and label it as “strawberry” based on the knowledge it acquired during training.
Types of Supervised Learning
You can divide supervised learning into two types:
- Classification – You can train machines to classify data into categories based on different characteristics. The fruit basket example is the perfect representation of this scenario.
- Regression – You can train machines to use specific data to make future predictions and identify trends.
Supervised Learning Algorithms
Supervised learning uses different algorithms to function:
- Linear regression – It identifies a linear relationship between an independent and a dependent variable.
- Logistic regression – It typically predicts binary outcomes (yes/no, true/false) and is important for classification purposes.
- Support vector machines – They use high-dimensional features to map data that can’t be separated by a linear line.
- Decision trees – They predict outcomes and classify data using tree-like structures.
- Random forests – They analyze several decision trees to come up with a unique prediction/result.
- Neural networks – They process data in a unique way, very similar to the human brain.
Supervised Learning: Examples and Applications
There’s no better way to understand supervised learning than through examples. Let’s dive into the real estate world.
Suppose you’re a real estate agent and need to predict the prices of different properties in your city. The first thing you’ll need to do is feed your machine existing data about available houses in the area. Factors like square footage, amenities, a backyard/garden, the number of rooms, and available furniture, are all relevant factors. Then, you need to “teach” the machine the prices of different properties. The more, the better.
A large dataset will help your machine pick up on seemingly minor but significant trends affecting the price. Once your machine processes this data and you introduce a new property to it, it will be able to cross-reference its features with the existing database and come up with an accurate price prediction.
The applications of supervised learning are vast. Here are the most popular ones:
- Sales – Predicting customers’ purchasing behavior and trends
- Finance – Predicting stock market fluctuations, price changes, expenses, etc.
- Healthcare – Predicting risk of diseases and infections, surgery outcomes, necessary medications, etc.
- Weather forecasts – Predicting temperature, humidity, atmospheric pressure, wind speed, etc.
- Face recognition – Identifying people in photos
Unsupervised Learning
Imagine a family with a baby and a dog. The dog lives inside the house, so the baby is used to it and expresses positive emotions toward it. A month later, a friend comes to visit, and they bring their dog. The baby hasn’t seen the dog before, but she starts smiling as soon as she sees it.
Why?
Because the baby was able to draw her own conclusions based on the new dog’s appearance: two ears, tail, nose, tongue sticking out, and maybe even a specific noise (barking). Since the baby has positive emotions toward the house dog, she also reacts positively to a new, unknown dog.
This is a real-life example of unsupervised learning. Nobody taught the baby about dogs, but she still managed to make accurate conclusions.
With supervised machine learning, you have a teacher who trains the machine. This isn’t the case with unsupervised learning. Here, it’s necessary to give the machine freedom to explore and discover information. Therefore, this machine learning approach deals with unlabeled data.
Types of Unsupervised Learning
There are two types of unsupervised learning:
- Clustering – Grouping uncategorized data based on their common features.
- Dimensionality reduction – Reducing the number of variables, features, or columns to capture the essence of the available information.
Unsupervised Learning Algorithms
Unsupervised learning relies on these algorithms:
- K-means clustering – It identifies similar features and groups them into clusters.
- Hierarchical clustering – It identifies similarities and differences between data and groups them hierarchically.
- Principal component analysis (PCA) – It reduces data dimensionality while boosting interpretability.
- Independent component analysis (ICA) – It separates independent sources from mixed signals.
- T-distributed stochastic neighbor embedding (t-SNE) – It explores and visualizes high-dimensional data.
Unsupervised Learning: Examples and Applications
Let’s see how unsupervised learning is used in customer segmentation.
Suppose you work for a company that wants to learn more about its customers to build more effective marketing campaigns and sell more products. You can use unsupervised machine learning to analyze characteristics like gender, age, education, location, and income. This approach is able to discover who purchases your products more often. After getting the results, you can come up with strategies to push the product more.
Unsupervised learning is often used in the same industries as supervised learning but with different purposes. For example, both approaches are used in sales. Supervised learning can accurately predict prices relying on past data. On the other hand, unsupervised learning analyzes the customers’ behaviors. The combination of the two approaches results in a quality marketing strategy that can attract more buyers and boost sales.
Another example is traffic. Supervised learning can provide an ETA to a destination, while unsupervised learning digs a bit deeper and often looks at the bigger picture. It can analyze a specific area to pinpoint accident-prone locations.
Differences Between Supervised and Unsupervised Learning
These are the crucial differences between the two machine learning approaches:
- Data labeling – Supervised learning uses labeled datasets, while unsupervised learning uses unlabeled, “raw” data. In other words, the former requires training, while the latter works independently to discover information.
- Algorithm complexity – Unsupervised learning requires more complex algorithms and powerful tools that can handle vast amounts of data. This is both a drawback and an advantage. Since it operates on complex algorithms, it’s capable of handling larger, more complicated datasets, which isn’t a characteristic of supervised learning.
- Use cases and applications – The two approaches can be used in the same industries but with different purposes. For example, supervised learning is used in predicting prices, while unsupervised learning is used in detecting customers’ behavior or anomalies.
- Evaluation metrics – Supervised learning tends to be more accurate (at least for now). Machines still require a bit of our input to display accurate results.
Choose Wisely
Do you need to teach your machine different data, or can you trust it to handle the analysis on its own? Think about what you want to analyze. Unsupervised and supervised learning may sound similar, but they have different uses. Choosing an inadequate approach leads to unreliable, irrelevant results.
Supervised learning is still more popular than unsupervised learning because it offers more accurate results. However, this approach can’t handle larger, complex datasets and requires human intervention, which isn’t the case with unsupervised learning. Therefore, we may see a rise in the popularity of the unsupervised approach, especially as the technology evolves and enables more accuracy.
Related posts

The Open Institute of Technology (OPIT) is turning two! It has been both a long journey and a whirlwind trip to reach this milestone. But it is also the perfect time to stop and reflect on what we have achieved over the last two years, as well as assess our hopes for the future. Join us as we map our journey over the last two years and look forward to future plans.
July 2023: Launching OPIT
OPIT officially launched as an EU-accredited online higher education institution in July 2023, and offered two core programs: a BSc in Modern Computer Science and an MSc in Applied Data Science and AI. Its first class matriculated in September of that year.
The launch of OPIT was several years in the making. Founder Riccardo Ocleppo was planning OPIT ever since he launched his first company, Docsity, in 2010, an online platform for students to share access to educational resources. As part of working on that project, Ocleppo had the chance to talk to thousands of students and professors and discovered just how big a gap there is between what is taught in universities today and job market demands. Ocleppo felt that this gap was especially wide in the field of computer science, and OPIT was his concept to fill that gap.
The vision was to provide university-level teaching that was accessible around the world through digital learning technologies and that was also affordable. Ocleppo’s vision also involved international professors and building strong relationships with global companies to ensure a truly international and fit-for-purpose learning experience.
One of the most important parts of launching OPIT was the recruitment of the faculty of professors, which Ocleppo was personally involved in. The idea was to build a roster of expert teachers and professionals who were leaders in the field and urge them to unite the teaching fundamentals with real-world applications and experience. The process involved screening more than 5,000 CVs, interviewing over 200 candidates, and recruiting 25 professors to form the core of OPIT’s faculty.
September 2023: The Inaugural Cohort
When OPIT officially launched, its first cohort included 100 students from 38 different countries. Divided between the BSc and MSc courses, students were also allowed to participate in one of two different tracks. Some chose the standard track to accommodate their existing work commitments, while others chose to fast-track to complete their studies sooner.
OPIT was pleased with its success in making the courses international and accessible, with notable representation from Africa. In the first cohort, 40% of MSc students were also from non-STEM fields, showing OPIT’s success at engaging professionals looking to develop skills for the modern workplace.
July 2024: A Growing Curriculum
Building on this initial success, in 2024, OPIT expanded its academic offering to include a second BSc program in Digital Business, and three new MSc programs in Digital Business & Innovation, Responsible Artificial Intelligence, and Enterprise Cybersecurity. These were all offered in addition to the original two programs.
The new course offerings led to total student numbers growing to over 300, hailing from 78 different countries. This also led to an expansion of the faculty, with professionals recruited from major business leaders such as Symantec, Microsoft, PayPal, McKinsey, MIT, Morgan Stanley, Amazon, and U.S. Naval Research. This focus on professional experience and real-world applications is ideal for OPIT as 80% of the student body are active working professionals.
January 2025: First Graduating Class
OPIT held its first-ever graduation ceremony in Valletta, Malta, on March 8, 2025. The ceremony was a hybrid event, with students attending both in person and virtually. The first graduating class consisted of 40 students who received an MSc in Applied Data Science and AI.
OPIT’s MSc programs include a capstone project that sees students apply their learning to real-world challenges. Projects included the use of large language models for the creation of chatbots in the ed-tech field, the digitalization of customer support processes in the paper and non-woven industry, personal data protection systems, AI applications for environmental sustainability, and predictive models for disaster prevention linked to climate change. Since many OPIT students realized their capstone projects within their organizations, OPIT also saw itself successfully facilitating digital innovation in the field.
July 2025: New Learning Environments
The next step for OPIT is not just to teach others how to leverage AI to work smarter, but to start applying AI solutions in our own business environment. To this end, OPIT unveiled its OPIT AI Copilot at the Microsoft AI Agents and the Future of Higher Education event in Milan in June 2025.
The OPIT AI Copilot is a specialist AI Agent designed to enhance learning in OPIT’s fully digital environment. OPIT AI Copilot acts as a personal tutor and study companion, and but rather than being trained on the World Wide Web, it is specifically trained on OPIT’s educational archive of around 3,500 hours of lectures and 3,000 proprietary documents.
The OPIT AI Copilot then provides real-time, personalized guidance that adapts to where the student is in the course and the progress they have shown in grasping the material. As well as pulling from existing materials, the OPIT AI Copilot can generate content to deepen learning, such as code samples and practical exams. It can also answer questions posed by the students with answers grounded in the official course material. The tool is available 24/7, and also has an intelligent examination mode, which prevents cheating.
In this way, OPIT AI Copilot enriches the OPIT learning environment by providing students with 24/7 personalized support for their learning journey, ideal for busy professionals balancing work and study. It is a step towards facing the challenge of “one-size-fits-all” education approaches that have plagued learning institutions for millennia.
September 2025: A New Cohort
On the heels of the OPIT AI Copilot launch, OPIT is excited about recruiting its next round of students, with applications open until September 2025. If you are interested in joining OPIT, you can learn more about its courses here.

Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: