

Algorithms are the backbone behind technology that have helped establish some of the world’s most famous companies. Software giants like Google, beverage giants Coca Cola and many other organizations utilize proprietary algorithms to improve their services and enhance customer experience. Algorithms are an inseparable part of the technology behind organization as they help improve security, product or service recommendations, and increase sales.
Knowing the benefits of algorithms is useful, but you might also be interested to know what makes them so advantageous. As such, you’re probably asking: “What is an algorithm?” Here’s the most common algorithm definition: an algorithm is a set of procedures and rules a computer follows to solve a problem.
In addition to the meaning of the word “algorithm,” this article will also cover the key types and characteristics of algorithms, as well as their applications.
Types of Algorithms and Design Techniques
One of the main reasons people rely on algorithms is that they offer a principled and structured means to represent a problem on a computer.
Recursive Algorithms
Recursive algorithms are critical for solving many problems. The core idea behind recursive algorithms is to use functions that call themselves on smaller chunks of the problem.
Divide and Conquer Algorithms
Divide and conquer algorithms are similar to recursive algorithms. They divide a large problem into smaller units. Algorithms solve each smaller component before combining them to tackle the original, large problem.
Greedy Algorithms
A greedy algorithm looks for solutions based on benefits. More specifically, it resolves problems in sections by determining how many benefits it can extract by analyzing a certain section. The more benefits it has, the more likely it is to solve a problem, hence the term greedy.
Dynamic Programming Algorithms
Dynamic programming algorithms follow a similar approach to recursive and divide and conquer algorithms. First, they break down a complex problem into smaller pieces. Next, it solves each smaller piece once and saves the solution for later use instead of computing it.
Backtracking Algorithms
After dividing a problem, an algorithm may have trouble moving forward to find a solution. If that’s the case, a backtracking algorithm can return to parts of the problem it has already solved until it determines a way forward that can overcome the setback.
Brute Force Algorithms
Brute force algorithms try every possible solution until they determine the best one. Brute force algorithms are simpler, but the solution they find might not be as good or elegant as those found by the other types of algorithms.
Algorithm Analysis and Optimization
Digital transformation remains one of the biggest challenges for businesses in 2023. Algorithms can facilitate the transition through careful analysis and optimization.
Time Complexity
The time complexity of an algorithm refers to how long you need to execute a certain algorithm. A number of factors determine time complexity, but the algorithm’s input length is the most important consideration.
Space Complexity
Before you can run an algorithm, you need to make sure your device has enough memory. The amount of memory required for executing an algorithm is known as space complexity.
Trade-Offs
Solving a problem with an algorithm in C or any other programming language is about making compromises. In other words, the system often makes trade-offs between the time and space available.
For example, an algorithm can use less space, but this extends the time it takes to solve a problem. Alternatively, it can take up a lot of space to address an issue faster.
Optimization Techniques
Algorithms generally work great out of the box, but they sometimes fail to deliver the desired results. In these cases, you can implement a slew of optimization techniques to make them more effective.
Memorization
You generally use memorization if you wish to elevate the efficacy of a recursive algorithm. The technique rewrites algorithms and stores them in arrays. The main reason memorization is so powerful is that it eliminates the need to calculate results multiple times.
Parallelization
As the name suggests, parallelization is the ability of algorithms to perform operations simultaneously. This accelerates task completion and is normally utilized when you have a lot of memory on your device.
Heuristics
Heuristic algorithms (a.k.a. heuristics) are algorithms used to speed up problem-solving. They generally target non-deterministic polynomial-time (NP) problems.
Approximation Algorithms
Another way to solve a problem if you’re short on time is to incorporate an approximation algorithm. Rather than provide a 100% optimal solution and risk taking longer, you use this algorithm to get approximate solutions. From there, you can calculate how far away they are from the optimal solution.
Pruning
Algorithms sometimes analyze unnecessary data, slowing down your task completion. A great way to expedite the process is to utilize pruning. This compression method removes unwanted information by shrinking algorithm decision trees.
Algorithm Applications and Challenges
Thanks to this introduction to algorithm, you’ll no longer wonder: “What is an algorithm, and what are the different types?” Now it’s time to go through the most significant applications and challenges of algorithms.
Sorting Algorithms
Sorting algorithms arrange elements in a series to help solve complex issues faster. There are different types of sorting, including linear, insertion, and bubble sorting. They’re generally used for exploring databases and virtual search spaces.
Searching Algorithms
An algorithm in C or other programming languages can be used as a searching algorithm. They allow you to identify a small item in a large group of related elements.
Graph Algorithms
Graph algorithms are just as practical, if not more practical, than other types. Graphs consist of nodes and edges, where each edge connects two nodes.
There are numerous real-life applications of graph algorithms. For instance, you might have wondered how engineers solve problems regarding wireless networks or city traffic. The answer lies in using graph algorithms.
The same goes for social media sites, such as Facebook. Algorithms on such platforms contain nodes, which represent key information, like names and genders and edges that represent the relationships or dependencies between them.
Cryptography Algorithms
When creating an account on some websites, the platform can generate a random password for you. It’s usually stronger than custom-made codes, thanks to cryptography algorithms. They can scramble digital text and turn it into an unreadable string. Many organizations use this method to protect their data and prevent unauthorized access.
Machine Learning Algorithms
Over 70% of enterprises prioritize machine learning applications. To implement their ideas, they rely on machine learning algorithms. They’re particularly useful for financial institutions because they can predict future trends.
Famous Algorithm Challenges
Many organizations struggle to adopt algorithms, be it an algorithm in data structure or computer science. The reason being, algorithms present several challenges:
- Opacity – You can’t take a closer look at the inside of an algorithm. Only the end result is visible, which is why it’s difficult to understand an algorithm.
- Heterogeneity – Most algorithms are heterogeneous, behaving differently from one another. This makes them even more complex.
- Dependency – Each algorithm comes with the abovementioned time and space restrictions.
Algorithm Ethics, Fairness, and Social Impact
When discussing critical characteristics of algorithms, it’s important to highlight the main concerns surrounding this technology.
Bias in Algorithms
Algorithms aren’t intrinsically biased unless the developer injects their personal biases into the design. If so, getting impartial results from an algorithm is highly unlikely.
Transparency and Explainability
Knowing only the consequences of algorithms prevents us from explaining them in detail. A transparent algorithm enables a user to view and understand its different operations. In contrast, explainability of an algorithm relates to its ability to provide reasons for the decisions it makes.
Privacy and Security
Some algorithms require end users to share private information. If cyber criminals hack the system, they can easily steal the data.
Algorithm Accessibility and Inclusivity
Limited explainability hinders access to algorithms. Likewise, it’s hard to include different viewpoints and characteristics in an algorithm, especially if it is biased.
Algorithm Trust and Confidence
No algorithm is omnipotent. Claiming otherwise makes it untrustworthy – the best way to prevent this is for the algorithm to state its limitations.
Algorithm Social Impact
Algorithms impact almost every area of life including politics, economic and healthcare decisions, marketing, transportation, social media and Internet, and society and culture in general.
Algorithm Sustainability and Environmental Impact
Contrary to popular belief, algorithms aren’t very sustainable. The extraction of materials to make computers that power algorithms is a major polluter.
Future of Algorithms
Algorithms are already advanced, but what does the future hold for this technology? Here are a few potential applications and types of future algorithms:
- Quantum Algorithms – Quantum algorithms are expected to run on quantum computers to achieve unprecedented speeds and efficiency.
- Artificial Intelligence and Machine Learning – AI and machine learning algorithms can help a computer develop human-like cognitive qualities via learning from its environment and experiences.
- Algorithmic Fairness and Ethics – Considering the aforementioned challenges of algorithms, developers are expected to improve the technology. It may become more ethical with fewer privacy violations and accessibility issues.
Smart, Ethical Implementation Is the Difference-Maker
Understanding algorithms is crucial if you want to implement them correctly and ethically. They’re powerful, but can also have unpleasant consequences if you’re not careful during the development stage. Responsible use is paramount because it can improve many areas, including healthcare, economics, social media, and communication.
If you wish to learn more about algorithms, accredited courses might be your best option. AI and machine learning-based modules cover some of the most widely-used algorithms to help expand your knowledge about this topic.
Related posts

You’ve probably seen two of the most recent popular social media trends. The first is creating and posting your personalized action figure version of yourself, complete with personalized accessories, from a yoga mat to your favorite musical instrument. There is also the Studio Ghibli trend, which creates an image of you in the style of a character from one of the animation studio’s popular films.
Both of these are possible thanks to OpenAI’s GPT-4o-powered image generator. But what are you risking when you upload a picture to generate this kind of content? More than you might imagine, according to Tom Vazdar, chair of cybersecurity at the Open Institute of Technology (OPIT), in a recent interview with Wired. Let’s take a closer look at the risks and how this issue ties into the issue of responsible artificial intelligence.
Uploading Your Image
To get a personalized image of yourself back from ChatGPT, you need to upload an actual photo, or potentially multiple images, and tell ChatGPT what you want. But in addition to using your image to generate content for you, OpenAI could also be using your willingly submitted image to help train its AI model. Vazdar, who is also CEO and AI & Cybersecurity Strategist at Riskoria and a board member for the Croatian AI Association, says that this kind of content is “a gold mine for training generative models,” but you have limited power over how that image is integrated into their training strategy.
Plus, you are uploading much more than just an image of yourself. Vazdar reminds us that we are handing over “an entire bundle of metadata.” This includes the EXIF data attached to the image, such as exactly when and where the photo was taken. And your photo may have more content in it than you imagine, with the background – including people, landmarks, and objects – also able to be tied to that time and place.
In addition to this, OpenAI also collects data about the device that you are using to engage with the platform, and, according to Vazdar, “There’s also behavioral data, such as what you typed, what kind of image you asked for, how you interacted with the interface and the frequency of those actions.”
After all that, OpenAI knows a lot about you, and soon, so could their AI model, because it is studying you.
How OpenAI Uses Your Data
OpenAI claims that they did not orchestrate these social media trends simply to get training data for their AI, and that’s almost certainly true. But they also aren’t denying that access to that freely uploaded data is a bonus. As Vazdar points out, “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”
OpenAI isn’t the only company using your data to train its AI. Meta recently updated its privacy policy to allow the company to use your personal information on Meta-related services, such as Facebook, Instagram, and WhatsApp, to train its AI. While it is possible to opt-out, Meta isn’t advertising that fact or making it easy, which means that most users are sharing their data by default.
You can also control what happens with your data when using ChatGPT. Again, while not well publicized, you can use ChatGPT’s self-service tools to access, export, and delete your personal information, and opt out of having your content used to improve OpenAI’s model. Nevertheless, even if you choose these options, it is still worth it to strip data like location and time from images before uploading them and to consider the privacy of any images, including people and objects in the background, before sharing.
Are Data Protection Laws Keeping Up?
OpenAI and Meta need to provide these kinds of opt-outs due to data protection laws, such as GDPR in the EU and the UK. GDPR gives you the right to access or delete your data, and the use of biometric data requires your explicit consent. However, your photo only becomes biometric data when it is processed using a specific technical measure that allows for the unique identification of an individual.
But just because ChatGPT is not using this technology, doesn’t mean that ChatGPT can’t learn a lot about you from your images.
AI and Ethics Concerns
But you might wonder, “Isn’t it a good thing that AI is being trained using a diverse range of photos?” After all, there have been widespread reports in the past of AI struggling to recognize black faces because they have been trained mostly on white faces. Similarly, there have been reports of bias within AI due to the information it receives. Doesn’t sharing from a wide range of users help combat that? Yes, but there is so much more that could be done with that data without your knowledge or consent.
One of the biggest risks is that the data can be manipulated for marketing purposes, not just to get you to buy products, but also potentially to manipulate behavior. Take, for instance, the Cambridge Analytica scandal, which saw AI used to manipulate voters and the proliferation of deepfakes sharing false news.
Vazdar believes that AI should be used to promote human freedom and autonomy, not threaten it. It should be something that benefits humanity in the broadest possible sense, and not just those with the power to develop and profit from AI.
Responsible Artificial Intelligence
OPIT’s Master’s in Responsible AI combines technical expertise with a focus on the ethical implications of AI, diving into questions such as this one. Focusing on real-world applications, the course considers sustainable AI, environmental impact, ethical considerations, and social responsibility.
Completed over three or four 13-week terms, it starts with a foundation in technical artificial intelligence and then moves on to advanced AI applications. Students finish with a Capstone project, which sees them apply what they have learned to real-world problems.

In May 2025, Riccardo Ocleppo, founder of the Open Institute of Technology (OPIT), gave the audience at TEDx Parma in Italy an insight into why he created OPIT, a new type of university that is quickly becoming essential in preparing students for an increasingly technological future.
Meet Riccardo
Although Riccardo graduated from Politecnico di Torino with a bachelor’s in electronic engineering in 2006 – followed by a master’s degree in 2008 – he felt unprepared for the challenges he felt he had to face as a professional. He sought to expand his vision by completing the master’s program at the London School of Business.
While studying in London, Riccardo became focused on how he could help other students optimize their studies and ensure they were properly prepared for their futures. This resulted in the creation of Docsity, an international online community where university students could exchange study materials to prepare for exams.
Docsity has grown into a global community with 15 million registered students. Moreover, it partners with over 250 universities and business schools worldwide that interview students and provide that information to educational organizations to help them refine their offerings. This experience of working as a conduit between students and universities shaped Riccardo’s understanding of the higher education sector’s needs, eventually leading to the creation of OPIT.
The Challenges Facing Higher Education
In his TEDx talk, Riccardo asked the Parma audience to imagine themselves on their first day of university – sitting in their classroom as their professor explains the concepts that they will learn over the coming years, designed to prepare them for the future.
But, he asked, how long will the skills in your curriculum be relevant? In the past, the skills learned at university would last someone for the rest of their professional lives. But today, with technology changing faster than ever, we have reached the point where we can’t accurately predict what technologies we will be using in five years. It is even more challenging, he said, to predict what kind of knowledge children sitting in classrooms today will need when they reach adulthood.
The inability to predict the skills that students will need in the future or adapt courses quickly enough to include those skills is why many university degrees are no longer fit for purpose, Riccardo explained. Instead, he stated, they are preparing students for a destination that will no longer exist when they graduate while pushing them over a road with a constantly moving target destination.
Building OPIT
With these challenges and his experiences from Docsity in mind, Riccardo set to work designing the kind of education he wished that he had received. He set out to create a university that would allow learners, at any stage in their career, to adapt and reinvent themselves for the changing world. The result was OPIT, which matriculated its first students in 2023.
With that in mind, OPIT courses are built around three pillars.
Pillar One: Bridging Theory and Practice
Universities often produce students with excellent theoretical knowledge of a subject area but with limited ability to apply that knowledge to real-world problems. It is how Riccardo felt about his knowledge and skills when he completed his electronic engineering degree.
OPIT degrees, on the other hand, are designed to provide students with not only a strong technical foundation but also an understanding of and the ability to develop real-world applications.
The OPIT faculty, recruited from some of the world’s leading businesses, play a central role in achieving this. Instead of relying on polished case studies published years after the fact, they use real-life workplace challenges as teaching tools.
Faculty members include practitioners and thought leaders from some of the world’s biggest tech companies, including Zorina Alliata, Principal AI and Generative AI Strategist at Amazon; Khaled Elbehiery, Senior Director and Network Engineer at Charter Communications; Andrea Gozzi, Head of Strategy and Partnership for the Digital Industries Ecosystem at Siemens; and Sabya Dasgupta, Lead Solution Architect at Microsoft.
For MSc programs, students complete this focus on application with the final Capstone Project, which encourages them to apply their knowledge to the real world through an industry internship.
Pillar Two: International and Multidisciplinary
As well as recruiting professors with an international and multidisciplinary profile, OPIT seeks to do the same with the cohort – people working in diverse fields and looking for ways to leverage the same technology to improve what they do. The diversity of the student profile helps break down both educational and industrial silos, encouraging multidisciplinary thinking and unexpected innovation. It can also give students a greater level of cultural awareness, which they may not have encountered before.
Courses involve online meetups between peers, allowing them to share challenges and learn through application. OPIT also hosts online events that allow students to connect with leaders from companies such as Morgan Stanley, PayPal, and Microsoft, to learn about the professional world today and forge networks for the future.
Pillar Three: Education That Fits Your Life
The third pillar of OPIT is that education should be flexible and fit into your life, rather than require you to put the rest of your life on hold to study. This is especially important for established professionals who want to adapt or reinvent themselves but don’t have the luxury of walking away from their work and other responsibilities for a few years to do so.
This is why OPIT courses are online by design – or “remote first,” as many companies brand it. This not only allows students to build study into their existing lives but also to develop experience working remotely as part of a distributed team, which are essential skills in today’s work environment.
OPIT Courses
Today, criteria such as “data literacy” and “comfortable working with AI” are often at the top of job descriptions. With these and other necessary skills in mind, OPIT launched with a BSc in Modern Computer Science and an MSc in Applied Data Science and AI.
Since then, they have also initiated a BSc in Digital Business and MSc degrees in Digital Business and Innovation, Responsible Artificial Intelligence, and Enterprise Cybersecurity. The first cohort of students celebrated their graduation ceremony on March 8, 2025.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: