In April 1999, a $433 million Air Force rocket inexplicably malfunctioned almost immediately after liftoff, causing the permanent loss of an $800 million military communications satellite. This $1.2 billion disaster remains one of the costliest accidents in human history.


You might wonder if scientists ever found out what caused this misfiring. They sure did! And the answer is a software bug.


This accident alone is a testament to the importance of software testing.


Although you can probably deduce the software testing definition, let’s also review it together.


So, what is software testing?


Software testing refers to running a software program before putting it on the market to determine whether it behaves as expected and displays no defects.


While testing itself isn’t free, these expenses are cost-effective compared to potential money loss resulting from software failure. And this is just one of the benefits of this process. Others include improving performance, preventing human and equipment loss, and increasing stakeholder confidence.


Now that you understand why software testing is such a big deal, let’s inspect this process in more detail.


Software Testing Fundamentals


We’ll start with the basics – what are the fundamentals of testing in software engineering? In other words, what exactly is its end goal, and which principles underlie it?


Regarding the objectives of software testing, there are three distinct ones aiming to answer crucial questions about the software.


  • Verification and validation. Does the software meet all the necessary requirements? And does it satisfy the end customer?
  • Defects and errors identification. Does the software have any defects or errors? What is their scope and impact? And did they cause related issues?
  • Software quality assurance. Is the software performing at optimal levels? Can the software engineering process be further optimized?

As for principles of software testing, there are seven of them, and they go as follows:


  1. Testing shows the presence of defects. With everything we’ve written about software testing, this sounds like a given. But this principle emphasizes that testing can only confirm the presence of defects. It can’t confirm their absence. So, even if no flaws are found, it doesn’t mean the system has none.
  2. Exhaustive testing is impossible. Given how vital software testing is, this process should ideally test all the possible scenarios to confirm the program is defect-free without a shadow of a doubt. Unfortunately, this is impossible to achieve in practice. There’s simply not enough time, money, or space to conduct such testing. Instead, test analysts can only base the testing amount on risk assessment. In other words, they’ll primarily test elements that are most likely to fail.
  3. Testing should start as early as possible. Catching defects in the early stages of software development makes all the difference for the final product. It also saves lots of money in the process. For this reason, software testing should start from the moment its requirements are defined.
  4. Most defects are within a small number of modules. This principle, known as defect clustering, follows the Pareto principle or the 80/20 rule. The rule states that approximately 80% of issues can be found in 20% of modules.
  5. Repetitive software testing is useless. Known as the Pesticide Paradox, this principle warns that conducting the same tests to discover new defects is a losing endeavor. Like insects become resistant to a repeatedly used pesticide mix, the tested software will become “immune” to the same tests.
  6. Testing is context-dependent. The same set of tests can rarely be used on two separate software programs. You’ll need to switch testing techniques, methodologies, and approaches based on the program’s application.
  7. The software program isn’t necessarily usable, even without defects. This principle is known as the absence of errors fallacy. Just because a system is error-free doesn’t mean it meets the customer’s business needs. In software testing objectives, software validation is as important as verification.

Types of Software Testing


There are dozens (if not hundreds) types of testing in software engineering. Of course, not all of these tests apply to all systems. Choosing the suitable types of testing in software testing boils down to your project’s nature and scope.


All of these testing types can be broadly classified into three categories.


Functional Testing


Functional software testing types examine the system to ensure it performs in accordance with the pre-determined functional requirements. We’ll explain each of these types using e-commerce as an example.


  • Unit Testing – Checking whether each software unit (the smallest system component that can be tested) performs as expected. (Does the “Add to Cart” button work?)
  • Integration Testing – Ensuring that all software components interact correctly within the system. (Is the product catalog seamlessly integrated with the shopping cart?)
  • System Testing – Verifying that a system produces the desired output. (Can you complete a purchase?)
  • Acceptance Testing – Ensuring that the entire system meets the end users’ needs. (Is all the information accurate and easy to access?)

Non-Functional Testing


Non-functional types of testing in software engineering deal with the general characteristics of a system beyond its functionality. Let’s go through the most common non-functional tests, continuing the e-commerce analogy.


  • Performance Testing – Evaluating how a system performs under a specific workload. (Can the e-commerce shop handle a massive spike in traffic without crashing?)
  • Usability Testing – Checking the customer’s ability to use the system effectively. (How quickly can you check out?)
  • Security Testing – Identifying the system’s security vulnerabilities. (Will sensitive credit card information be stored securely?)
  • Compatibility Testing – Verifying if the system can run on different platforms and devices. (Can you complete a purchase using your mobile phone?)
  • Localization Testing – Checking the system’s behavior in different locations and regions. (Will time-sensitive discounts take time zones into account?)

Maintenance Testing


Maintenance testing takes place after the system has been produced. It checks whether (or how) the changes made to fix issues or add new features have affected the system.


  • Regression Testing – Checking whether the changes have affected the system’s functionality. (Does the e-commerce shop work seamlessly after integrating a new payment gateway?)
  • Smoke Testing – Verifying the system’s basic functionality before conducting more extensive (and expensive!) tests. (Can the new product be added to the cart?)
  • Sanity Testing – Determining whether the new functionality operates as expected. (Does the new search filter select products adequately?)

Levels of Software Testing


Software testing isn’t done all at once. There are levels to it. Four, to be exact. Each level contains different types of tests, grouped by their position in the software development process.


Read about the four levels of testing in software testing here.


Level 1: Unit Testing


Unit testing helps developers determine whether individual system components (or units) work properly. Since it takes place at the lowest level, this testing sets the tone for the rest of the software development process.


This testing plays a crucial role in test-driven development (TDD). In this methodology, developers perform test cases first and worry about writing the code for software development later.


Level 2: Integration Testing


Integration testing focuses on the software’s inner workings, checking how different units and components interact. After all, you can’t test the system as a whole if it isn’t coherent from the start.


During this phase, testers use two approaches to integration testing: top-down (starting with the highest-level units) and bottom-up (integrating the lowest-level units first).


Level 3: System Testing


After integration testing, the system can now be evaluated as a whole. And that’s exactly what system testing does.


System testing methods are usually classified as white-box or black-box testing. The primary difference is whether the testers are familiar with the system’s internal code structure. In white-box testing, they are.


Level 4: Acceptance Testing


Acceptance testing determines whether the system delivers on its promises. Two groups are usually tasked with acceptance testing: quality assessment experts (alpha testing before the software launches) and a limited number of users (beta testing in a real-time environment).



Software Testing Process


Although some variations might exist, the software testing process typically follows the same pattern.


Step 1: Planning the Test


This step entails developing the following:


  • Test strategy for outlining testing approaches
  • Test plan for detailing testing objectives, priorities, and processes
  • Test estimation for calculating the time and resources needed to complete the testing process

Step 2: Designing the Test


In the design phase, testers create the following:


  • Test scenarios (hypothetical situations used to test the system)
  • Test cases (instructions on how the system should be tested)
  • Test data (set of values used to test the system)

Step 3: Executing the Test


Text execution refers to performing (and monitoring) the planned and designed tests. This phase begins with setting up the test environment and ends with writing detailed reports on the findings.


Step 4: Closing the Test


After completing the testing, testers generate relevant metrics and create a summary report on their efforts. At this point, they have enough information to determine whether the tested software is ready to be released.


High-Quality Testing for High-Quality Software


Think of different types of software testing as individual pieces of a puzzle that come together to form a beautiful picture. Performing software testing hierarchically (from Level 1 to Level 4) ensures no stone is left unturned, and the tested software won’t let anyone down.


With this in mind, it’s easy to conclude that you should only attempt software development projects if you implement effective software testing practices first.

Related posts

Master the AI Era: Key Skills for Success
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 24, 2025 6 min read

The world is rapidly changing. New technologies such as artificial intelligence (AI) are transforming our lives and work, redefining the definition of “essential office skills.”

So what essential skills do today’s workers need to thrive in a business world undergoing a major digital transformation? It’s a question that Alan Lerner, director at Toptal and lecturer at the Open Institute of Technology (OPIT), addressed in his recent online masterclass.

In a broad overview of the new office landscape, Lerner shares the essential skills leaders need to manage – including artificial intelligence – to keep abreast of trends.

Here are eight essential capabilities business leaders in the AI era need, according to Lerner, which he also detailed in OPIT’s recent Master’s in Digital Business and Innovation webinar.

An Adapting Professional Environment

Lerner started his discussion by quoting naturalist Charles Darwin.

“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change.”

The quote serves to highlight the level of change that we are currently seeing in the professional world, said Lerner.

According to the World Economic Forum’s The Future of Jobs Report 2025, over the next five years 22% of the labor market will be affected by structural change – including job creation and destruction – and much of that change will be enabled by new technologies such as AI and robotics. They expect the displacement of 92 million existing jobs and the creation of 170 million new jobs by 2030.

While there will be significant growth in frontline jobs – such as delivery drivers, construction workers, and care workers – the fastest-growing jobs will be tech-related roles, including big data specialists, FinTech engineers, and AI and machine learning specialists, while the greatest decline will be in clerical and secretarial roles. The report also predicts that most workers can anticipate that 39% of their existing skill set will be transformed or outdated in five years.

Lerner also highlighted key findings in the Accenture Life Trends 2025 Report, which explores behaviors and attitudes related to business, technology, and social shifts. The report noted five key trends:

  • Cost of Hesitation – People are becoming more wary of the information they receive online.
  • The Parent Trap – Parents and governments are increasingly concerned with helping the younger generation shape a safe relationship with digital technology.
  • Impatience Economy – People are looking for quick solutions over traditional methods to achieve their health and financial goals.
  • The Dignity of Work – Employees desire to feel inspired, to be entrusted with agency, and to achieve a work-life balance.
  • Social Rewilding – People seek to disconnect and focus on satisfying activities and meaningful interactions.

These are consumer and employee demands representing opportunities for change in the modern business landscape.

Key Capabilities for the AI Era

Businesses are using a variety of strategies to adapt, though not always strategically. According to McClean & Company’s HR Trends Report 2025, 42% of respondents said they are currently implementing AI solutions, but only 7% have a documented AI implementation strategy.

This approach reflects the newness of the technology, with many still unsure of the best way to leverage AI, but also feeling the pressure to adopt and adapt, experiment, and fail forward.

So, what skills do leaders need to lead in an environment with both transformation and uncertainty? Lerner highlighted eight essential capabilities, independent of technology.

Capability 1: Manage Complexity

Leaders need to be able to solve problems and make decisions under fast-changing conditions. This requires:

  • Being able to look at and understand organizations as complex social-technical systems
  • Keeping a continuous eye on change and adopting an “outside-in” vision of their organization
  • Moving fast and fixing things faster
  • Embracing digital literacy and technological capabilities

Capability 2: Leverage Networks

Leaders need to develop networks systematically to achieve organizational goals because it is no longer possible to work within silos. Leaders should:

  • Use networks to gain insights into complex problems
  • Create networks to enhance influence
  • Treat networks as mutually rewarding relationships
  • Develop a robust profile that can be adapted for different networks

Capability 3: Think and Act “Global”

Leaders should benchmark using global best practices but adapt them to local challenges and the needs of their organization. This requires:

  • Identifying what great companies are achieving and seeking data to understand underlying patterns
  • Developing perspectives to craft global strategies that incorporate regional and local tactics
  • Learning how to navigate culturally complex and nuanced business solutions

Capability 4: Inspire Engagement

Leaders must foster a culture that creates meaningful connections between employees and organizational values. This means:

  • Understanding individual values and needs
  • Shaping projects and assignments to meet different values and needs
  • Fostering an inclusive work environment with plenty of psychological safety
  • Developing meaningful conversations and both providing and receiving feedback
  • Sharing advice and asking for help when needed

Capability 5: Communicate Strategically

Leaders should develop crisp, clear messaging adaptable to various audiences and focus on active listening. Achieving this involves:

  • Creating their communication style and finding their unique voice
  • Developing storytelling skills
  • Utilizing a data-centric and fact-based approach to communication
  • Continual practice and asking for feedback

Capability 6: Foster Innovation

Leaders should collaborate with experts to build a reliable innovation process and a creative environment where new ideas thrive. Essential steps include:

  • Developing or enhancing structures that best support innovation
  • Documenting and refreshing innovation systems, processes, and practices
  • Encouraging people to discover new ways of working
  • Aiming to think outside the box and develop a growth mindset
  • Trying to be as “tech-savvy” as possible

Capability 7: Cultivate Learning Agility

Leaders should always seek out and learn new things and not be afraid to ask questions. This involves:

  • Adopting a lifelong learning mindset
  • Seeking opportunities to discover new approaches and skills
  • Enhancing problem-solving skills
  • Reviewing both successful and unsuccessful case studies

Capability 8: Develop Personal Adaptability

Leaders should be focused on being effective when facing uncertainty and adapting to change with vigor. Therefore, leaders should:

  • Be flexible about their approach to facing challenging situations
  • Build resilience by effectively managing stress, time, and energy
  • Recognize when past approaches do not work in current situations
  • Learn from and capitalize on mistakes

Curiosity and Adaptability

With the eight key capabilities in mind, Lerner suggests that curiosity and adaptability are the key skills that everyone needs to thrive in the current environment.

He also advocates for lifelong learning and teaches several key courses at OPIT which can lead to a Bachelor’s Degree in Digital Business.

Read the article
Lessons From History: How Fraud Tactics From the 18th Century Still Impact Us Today
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2025 6 min read

Many people treat cyber threats and digital fraud as a new phenomenon that only appeared with the development of the internet. But fraud – intentional deceit to manipulate a victim – has always existed; it is just the tools that have changed.

In a recent online course for the Open Institute of Technology (OPIT), AI & Cybersecurity Strategist Tom Vazdar, chair of OPIT’s Master’s Degree in Enterprise Cybersecurity, demonstrated the striking parallels between some of the famous fraud cases of the 18th century and modern cyber fraud.

Why does the history of fraud matter?

Primarily because the psychology and fraud tactics have remained consistent over the centuries. While cybersecurity is a tool that can combat modern digital fraud threats, no defense strategy will be successful without addressing the underlying psychology and tactics.

These historical fraud cases Vazdar addresses offer valuable lessons for current and future cybersecurity approaches.

The South Sea Bubble (1720)

The South Sea Bubble was one of the first stock market crashes in history. While it may not have had the same far-reaching consequences as the Black Thursday crash of 1929 or the 2008 crash, it shows how fraud can lead to stock market bubbles and advantages for insider traders.

The South Sea Company was a British company that emerged to monopolize trade with the Spanish colonies in South America. The company promised investors significant returns but provided no evidence of its activities. This saw the stock prices grow from £100 to £1,000 in a matter of months, then crash when the company’s weakness was revealed.

Many people lost a significant amount of money, including Sir Isaac Newton, prompting the statement, “I can calculate the movement of the stars, but not the madness of men.

Investors often have no way to verify a company’s claim, making stock markets a fertile ground for manipulation and fraud since their inception. When one party has more information than another, it creates the opportunity for fraud. This can be seen today in Ponzi schemes, tech stock bubbles driven by manipulative media coverage, and initial cryptocurrency offerings.

The Diamond Necklace Affair (1784-1785)

The Diamond Necklace Affair is an infamous incident of fraud linked to the French Revolution. An early example of identity theft, it also demonstrates that the harm caused by such a crime can go far beyond financial.

A French aristocrat named Jeanne de la Mont convinced Cardinal Louis-René-Édouard, Prince de Rohan into thinking that he was buying a valuable diamond necklace on behalf of Queen Marie Antoinette. De la Mont forged letters from the queen and even had someone impersonate her for a meeting, all while convincing the cardinal of the need for secrecy. The cardinal overlooked several questionable issues because he believed he would gain political benefit from the transaction.

When the scheme finally exposed, it damaged Marie Antoinette’s reputation, despite her lack of involvement in the deception. The story reinforced the public perception of her as a frivolous aristocrat living off the labor of the people. This contributed to the overall resentment of the aristocracy that erupted in the French Revolution and likely played a role in Marie Antoinette’s death. Had she not been seen as frivolous, she might have been allowed to live after her husband’s death.

Today, impersonation scams work in similar ways. For example, a fraudster might forge communication from a CEO to convince employees to release funds or take some other action. The risk of this is only increasing with improved technology such as deepfakes.

Spanish Prisoner Scam (Late 1700s)

The Spanish Prisoner Scam will probably sound very familiar to anyone who received a “Nigerian prince” email in the early 2000s.

Victims received letters from a “wealthy Spanish prisoner” who needed their help to access his fortune. If they sent money to facilitate his escape and travel, he would reward them with greater riches when he regained his fortune. This was only one of many similar scams in the 1700s, often involving follow-up requests for additional payments before the scammer disappeared.

While the “Nigerian prince” scam received enough publicity that it became almost unbelievable that people could fall for it, if done well, these can be psychologically sophisticated scams. The stories play on people’s emotions, get them invested in the person, and enamor them with the idea of being someone helpful and important. A compelling narrative can diminish someone’s critical thinking and cause them to ignore red flags.

Today, these scams are more likely to take the form of inheritance fraud or a lottery scam, where, again, a person has to pay an advance fee to unlock a much bigger reward, playing on the common desire for easy money.

Evolution of Fraud

These examples make it clear that fraud is nothing new and that effective tactics have thrived over the centuries. Technology simply opens up new opportunities for fraud.

While 18th-century scammers had to rely on face-to-face contact and fraudulent letters, in the 19th century they could leverage the telegraph for “urgent” communication and newspaper ads to reach broader audiences. In the 20th century, there were telephones and television ads. Today, there are email, social media, and deepfakes, with new technologies emerging daily.

Rather than quack doctors offering miracle cures, we see online health scams selling diet pills and antiaging products. Rather than impersonating real people, we see fake social media accounts and catfishing. Fraudulent sites convince people to enter their bank details rather than asking them to send money. The anonymity of the digital world protects perpetrators.

But despite the technology changing, the underlying psychology that makes scams successful remains the same:

  • Greed and the desire for easy money
  • Fear of missing out and the belief that a response is urgent
  • Social pressure to “keep up with the Joneses” and the “Bandwagon Effect”
  • Trust in authority without verification

Therefore, the best protection against scams remains the same: critical thinking and skepticism, not technology.

Responding to Fraud

In conclusion, Vazdar shared a series of steps that people should take to protect themselves against fraud:

  • Think before you click.
  • Beware of secrecy and urgency.
  • Verify identities.
  • If it seems too good to be true, be skeptical.
  • Use available security tools.

Those security tools have changed over time and will continue to change, but the underlying steps for identifying and preventing fraud remain the same.

For more insights from Vazdar and other experts in the field, consider enrolling in highly specialized and comprehensive programs like OPIT’s Enterprise Security Master’s program.

Read the article