The larger your database, the higher the possibility of data repetition and inaccuracies that compromise the results you pull from the database. Normalization in DBMS exists to counteract those problems by helping you to create more uniform databases in which redundancies are less likely to occur.


Mastering normalization is a key skill in DBMS for the simple fact that an error-strewn database is of no use to an organization. For example, a retailer that has to deal with a database that has multiple entries for phone numbers and email addresses is a retailer that can’t see as effectively as one that has a simple route to the customer. Let’s look at normalization in DBMS and how it helps you to create a more organized database.


The Concept of Normalization


Grab a pack of playing cards and throw them onto the floor. Now, pick up the “Jack of Hearts.” It’s a tough task because the cards are strewn all over the place. Some are facing down and there’s no rhyme, reason, or pattern to how the cards lie, meaning you’re going to have to check every card individually to find the one you want.


That little experiment shows you how critical organization is, even with a small set of “data.” It also highlights the importance of normalization in DBMS. Through normalization, you implement organizational controls using a set of principles designed to achieve the following:


  • Eliminate redundancy – Lower (or eliminate) occurrences of data repeating across different tables, or inside individual tables, in your DBMS.
  • Minimize data anomalies – Better organization makes it easier to spot datasets that don’t fit the “norm,” meaning fewer anomalies.
  • Improve data integrity – More accurate data comes from normalization controls. Database users can feel more confident in their results because they know that the controls ensure integrity.

The Process of Normalization


If normalization in DBMS is all about organization, it stands to reason that they would be a set process to follow when normalizing your tables and database:


  1. Decompose your tables – Break every table down into its various parts, which may lead to you creating several tables out of one. Through decomposition, you separate different datasets, eliminate inconsistencies, and set the stage for creating relationships and dependencies between tables.
  2. Identify functional dependencies – An attribute in one table may be dependent on another to exist. For example, a “Customer ID” number in a retailer’s “Customer” table is functionally dependent on the “Customer Name” field because the ID can’t exist without the customer. Identifying these types of dependencies ensures you don’t end up with empty records (such as a record with a “Customer ID” and no customer attached to it).
  3. Apply normalization rules – Once you’re broken down your table and identified the functional dependencies, you apply relevant normalization rules. You’ll use Normal Forms to do this, with the six highlighted below each having its own rules, structures, and use cases.

Normal Forms in DBMS


There isn’t a “single” way to achieve normalization in DBMS because every database (and the tables it contains) is different. Instead, there are six normal forms you may use, with each having its own rules that you need to understand to figure out which to apply.


First Normal Form (1NF)


If a relation can’t contain multiple values, it’s in 1NF. In other words, each attribute in the table can only contain a single (called “atomic”) value.


Example


If a retailer wants to store the details of its customers, it may have attributes in its table like “Customer Name,” “Phone Number,” and “Email Address.” By applying 1NF to this table, you ensure that the attributes that could contain multiple entries (“Phone Number” and “Email Address”) only contain one, making contacting that customer much simpler.


Second Normal Form (2NF)


A table that’s in 2NF is in 1NF, with the additional condition that none of its non-prime attributes depend on a subset of candidate keys within the table.


Example


Let’s say an employer wants to create a table that contains information about an employee, the skills they have, and their age. An employee may have multiple skills, leading to multiple records for the same employee in the table, with each denoting a skill while the ID number and age of the employee repeat for each record.


In this table, you’ve achieved 1NF because each attribute has an atomic value. However, the employee’s age is dependent on the employee ID number. To achieve 2NF, you’d break this table down into two tables. The first will contain the employee’s ID number and age, with that ID number linking to a second table that lists each of the skills associated with the employee.


Third Normal Form (3NF)


In 3NF, the table you have must already be in 2NF form, with the added rule of removing the transitive functional dependency of the non-prime attribute of any super key. Transitive functional dependency occurs if the dependency is the result of a pair of functional dependencies. For example, the relationship between A and C is a transitive dependency if A depends on B, B depends on C, but B doesn’t depend on A.


Example


Let’s say a school creates a “Students” table with the following attributes:


  • Student ID
  • Name
  • Zip Code
  • State
  • City
  • District

In this case, the “State,” “District,” and “City” attributes all depend on the “Zip Code” attribute. That “Zip” attribute depends on the “Student ID” attribute, making “State,” “District,” and “City” all transitively depending on “Student ID.”


To resolve this problem, you’d create a pair of tables – “Student” and “Student Zip.” The “Student” table contains the “Student ID,” “Name,” and “Zip Code” attributes, with that “Zip Code” attribute being the primary key of a “Student Zip” table that contains the rest of the attributes and links to the “Student” table.



Boyce-Codd Normal Form (BCNF)


Often referred to as 3.5NF, BCNF is a stricter version of 3NF. So, this normalization in DBMS rule occurs if your table is in 3NF, and for every functional dependence between two fields (i.e., A -> B), A is the super key of your table.


Example


Sticking with the school example, every student in a school has multiple classes. The school has a table with the following fields:


  • Student ID
  • Nationality
  • Class
  • Class Type
  • Number of Students in Class

You have several functional dependencies here:


  • Student ID -> Nationality
  • Class -> Number of Students in Class, Class Type

As a result, both the “Student ID” and “Class” attributes are candidate keys but can’t serve as keys alone. To achieve BCNF normalization, you’d break the above table into three – “Student Nationality,” “Student Class,” and “Class Mapping,” allowing “Student ID” and “Class” to serve as primary keys in their own tables.


Fourth Normal Form (4NF)


In 4NF, the database must meet the requirements of BCNF, in addition to containing no more than a single multivalued dependency. It’s often used in academic circles, as there’s little use for 4NF elsewhere.


Example


Let’s say a college has a table containing the following fields:


  • College Course
  • Lecturer
  • Recommended Book

Each of these attributes is independent of the others, meaning each can change without affecting the others. For example, the college could change the lecturer of a course without altering the recommended reading or the course’s name. As such, the existence of the course depends on both the “Lecturer” and “Recommended Book” attributes, creating a multivalued dependency. If a DBMS has more than one of these types of dependencies, it’s a candidate for 4NF normalization.


Fifth Normal Form (5NF)


If your table is in 4NF, has no join dependencies, and all joining is lossless, it’s in 5NF. Think of this as the final form when it comes to normalization in DBMS, as you’ve broken your table down so much that you’ve made redundancy impossible.


Example


A college may have a table that tells them which lecturers teach certain subjects during which semesters, creating the following attributes:


  • Subject
  • Lecturer Name
  • Semester

Let’s say one of the lecturers teaches both “Physics” and “Math” for “Semester 1,” but doesn’t teach “Math” for Semester 2. That means you need to combine all of the fields in this table to get an accurate dataset, leading to redundancy. Add a third semester to the mix, especially if that semester has no defined courses or lecturers, and you have to join dependencies.


The 5NF solution is to break this table down into three tables:


  • Table 1 – Contains the “Semester” and “Subject” attributes to show which subjects are taught in each semester.
  • Table 2 – Contains the “Subject” and “Lecturer Name” attributes to show which lecturers teach a subject.
  • Table 3 – Contains the “Semester” and “Lecturer Name” attributes so you can see which lecturers teach during which semesters.

Benefits of Normalization in DBMS


With normalization in DBMS being so much work, you need to know the following benefits to show that it’s worth your effort:


  • Improved database efficiency
  • Better data consistency
  • Easier database maintenance
  • Simpler query processing
  • Better access controls, resulting in superior security

Limitations and Trade-Offs of Normalization


Normalization in DBMS does have some drawbacks, though these are trade-offs that you accept for the above benefits:


  • The larger your database gets, the more demands it places on system performance.
  • Breaking tables down leads to complexity.
  • You have to find a balance between normalization and denormalization to ensure your tables make sense.

Practical Tips for Mastering Normalization Techniques


Getting normalization in DBMS is hard, especially when you start feeling like you’re dividing tables into so many small tables that you’re losing track of the database. These tips help you apply normalization correctly:


  • Understand the database requirements – Your database exists for you to extract data from it, so knowing what you’ll need to extract indicates whether you need to normalize tables or not.
  • Document all functional dependencies – Every functional dependence that exists in your database makes the table in which it exists a candidate for normalization. Identify each dependency and document it so you know whether you need to break the table down.
  • Use software and tools – You’re not alone when poring through your database. There are plenty of tools available that help you to identify functional dependencies. Many make normalization suggestions, with some even being able to carry out those suggestions for you.
  • Review and refine – Every database evolves alongside its users, so continued refining is needed to identify new functional dependencies (and opportunities for normalization).
  • Collaborate with other professionals – A different set of eyes on a database may reveal dependencies and normalization opportunities that you don’t see.

Make Normalization Your New Norm


Normalization may seem needlessly complex, but it serves the crucial role of making the data you extract from your database more refined, accurate, and free of repetition. Mastering normalization in DBMS puts you in the perfect position to create the complex databases many organizations need in a Big Data world. Experiment with the different “normal forms” described in this article as each application of the techniques (even for simple tables) helps you get to grips with normalization.

Related posts

How Regenerative Business Models Are Redefining Innovation and Sustainability
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 18, 2025 6 min read

Open Institute of Technology (OPIT) masterclasses bring students face-to-face with real-world business challenges. In OPIT’s July masterclass, OPIT Professor Francesco Derchi and Ph.D. candidate Robert Mario de Stefano explained the principles of regenerative businesses and how regeneration goes hand in hand with growth.

Regenerative Business Models

Professor Derchi began by explaining what exactly is meant by regenerative business models, clearly differentiating them from sustainable or circular models.

Many companies pursue sustainable business models in which they offset their negative impact by investing elsewhere. For example, businesses that are big carbon consumers will support nature regeneration projects. Circular business models are similar but are more focused on their own product chain, aiming to minimize waste by keeping products in use as long as possible through recycling. Both models essentially aim to have a “net-zero” negative impact on the environment.

Regenerative models are different because they actively aim to have a “net-positive” impact on the environment, not just offsetting their own use but actively regenerating the planet.

Massive Transformative Purpose

While regenerative business models are often associated with philanthropic endeavors, Professor Derchi explained that they do not have to be, and that investment in regeneration can be a driver of growth.

He discussed the importance of corporate purpose in the modern business space. Having a strong and clearly stated corporate purpose is considered essential to drive business decision-making, encourage employee buy-in, and promote customer loyalty.

But today, simple corporate missions, such as “make good shoes,” don’t go far enough. People are looking for a Massive Transformational Purpose (MTP) that can take the business to the next level.

Take, for example, Ben & Jerry’s. The business’s initial corporate purpose may have been to make great ice cream and serve it up in a way that people will enjoy. But the business really began to grow when they embraced an MTP. As they announced in their mission statement, “We believe that ice cream can change the world.” Their business activities also have the aim of advancing human rights and dignity, supporting social and economic justice, and protecting and restoring the Earth’s natural systems. While these aims are philanthropic, they have also helped the business grow.

RePlanet

Professor Derchi next talked about RePlanet, a business he recently worked to develop their MTP. Founded in 2015, RePlanet designs and implements customized renewable energy solutions for businesses and projects. The company already operates in the renewable energy field and ranked as the 21st fastest-growing business in Italy in 2023. So while they were already enjoying great success, Derchi worked with them to see if actively embracing a regenerative business model could unlock additional growth.

Working together, RePlanet moved towards an MTP of building a greener future based on today’s choices, ensuring a cleaner world for generations. Meeting this goal started with the energy products that RePlanet sells, such as energy systems that recover heat from dairy farms. But as the business’s MTP, it goes beyond that. RePlanet doesn’t just engage suppliers; it chooses partners that share its specific values. It also influences the projects they choose to work on – they prioritize high-impact social projects, such as recently installing photovoltaic energy systems at a local hospital in Nigeria – and how RePlanet treats its talent, acknowledging that people are the true energy of the company.

Regenerative Business Strategies

Based on work with RePlanet and other businesses, Derchi has identified six archetypal regenerative business strategies for businesses that want to have both a regenerative impact and drive growth:

  • Regenerative Leadership – Laying the foundation for regeneration in a broader sense throughout the company
  • Nature Regeneration – Strategies to improve the health of the natural world
  • Social Regeneration – Regenerating human ecosystems through things such as fair-trade practices
  • Responsible Sourcing – Empowering and strengthening suppliers and their communities
  • Health & Well-being – Creating products and services that have a positive effect on customers
  • Employee Focus – Improve work conditions, lives, and well-being of employees.

Case Studies

Building on the concept of regenerative business models, Roberto Mario de Stefano shared other case studies of businesses that are having a positive impact and enjoying growth thanks to regenerative business models and strategies.

Biorfarm

Biorfarm is a digital platform that supports small-scale agriculture by creating a direct link between small farmers and consumers. Cutting out the middleman in modern supply chains means that farmers earn about 50% more for their produce. They set consumers up as “digital farmers” who actively support and learn about farming activities to promote more conscious food consumption.

Their vision is to create a food economy in which those who produce food and those who consume it are connected. This moves consumers from passive cash cows for large corporations that prioritize profits over the well-being of farmers to actively supporting natural production and a more sustainable system.

Rifo Lab

Rifo Lab is a circular clothing brand with the vision of addressing the problem of overproduction in the clothing industry. Established in Prato, Italy, a traditional textile-producing area, the company produces clothes made from textile waste and biodegradable materials. There are no physical stores, and all orders must be placed online; everything is made to order, reducing excess production.

With an eye on social regeneration, all production takes place within 30 kilometers of their offices, allowing the business to support ethical and local production. They also work with companies that actively integrate migrants into the local community, sharing their local artisan crafts with future generations.

Ogyre

Ogyre is a digital platform that allows you to pay fishermen to fish for waste. When fishermen are out conducting their livelihood, they also collect a significant amount of waste from the ocean, especially plastic waste. Ogyre arranges for fishermen to get paid for collecting that waste, which in turn supports the local fishing communities, and then transforms the waste collected into new sustainable products.

Moving Towards a Regenerative Future

The masterclass concluded with a Q&A session, where it explained that working in regenerative businesses requires the same skills as any other business. But it also requires you to embrace a mindset where value comes from giving and that growth is about working together for a better future, and not just competition.

Read the article
Addressing the Skills Gap: OPIT Prepares Students for the Modern Job Market
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 18, 2025 5 min read

Riccardo Ocleppo’s vision for the Open Institute of Technology (OPIT) started when he realized that his own university-level training had not properly prepared him for the modern workplace. Technological innovation is moving quickly and changing the nature of work, while university curricula evolve slowly, in part due to systems in place designed to preserve the quality of courses.

Ocleppo was determined to create a higher learning institution that filled the gap between the two realities – delivering high-quality education while preparing professionals to work in dynamic environments that keep pace with technology. Thus, OPIT opened enrolments in 2023 with a curriculum that created a unique bridge between the present and the future.

This is the story of one student, Ania Jaca, whose time at OPIT gave her the skills to connect her knowledge of product design to full system deployment.

Meet Ania

Ania is an example of an active professional who was able to identify what was missing in her own skills that would be needed if she wanted to advance her career in the direction she desired.

Ania is a highly skilled professional who was working on product and industrial design at Deloitte. She has an MA in product design, speaks five languages, studied in China, and is an avid boxer. She had the intelligence and the temperament to succeed in her career, but felt that she lacked the skills to advance and move from determining how products look to how systems really work, scale, and evolve.

Ania taught herself skills such as Python, artificial intelligence (AI), and cloud infrastructure, but soon realized that she needed a more structured education to go deeper. Thus, the search for her next steps began, and her introduction to OPIT.

OPIT appealed to Ania because it offered a fully EU-accredited MSc that she could pursue at her own pace, thanks to remote delivery and flexible hours. But more than that, it filled exactly the knowledge gap she was looking to build upon, teaching her technical foundations, but always with a focus on applications in the real world. Part of the appeal was the faculty, which includes professionals who are leaders in their field and who deal with current professional challenges on a daily basis, which they can bring into the classroom.

Ania enrolled in OPIT’s MSc in Applied Data Science & AI.

MSc in Applied Data Science and AI

This is OPIT’s first master’s program, which also launched in 2023, and is now one of four on offer. The course is designed for graduates like Ania who want a career at the intersection of management and technology. It is attractive to professionals who are already working in this area but lack the technical training to step into certain roles. OPIT requires no computer science prerequisites, so it accepted Ania with her MA in product design.

It is an intensive program that starts with foundational application courses in business, data science, machine learning, artificial intelligence, and problem-solving. The program then moves towards applying data science and AI methodologies and tools to real-life business problems.

The course combines theoretical study with a capstone project that lets students apply what they learn in the real world, either at their existing company or through internship programs. Many of the projects developed by students go on to become fundamental to the businesses they work with.

Ania’s Path Forward

Ania is working on her capstone project with Neperia Group, an Italian-based IT systems development company that works mostly with financial, insurance, and industrial companies. They specialize in developing analysis tools for existing software to enhance insight, streamline management, minimize the impact of corrective and evolutionary interventions, and boost performance.

Ania is specifically working on tools for assessing vulnerabilities in codebases as an advanced cybersecurity tool.

Ania credits her studies at OPIT for helping her build solid foundations in data science, machine learning, and cloud workflows, giving her a thorough understanding of digital products from end to end. She feels this has prepared her for roles at the intersection between infrastructure, security, and deployment, which is exactly where she wants to be. OPIT is excited to see where Ania’s career takes her in the coming years.

Preparing for the Future of Work

Overall, studying at OPIT has helped Ania and others like her prepare for the future of work. According to the Visual Capitalist, the fastest-growing jobs between 2025 and 2030 will be in big data (up by 110%), Fintech engineers (up by 95%), AI and machine learning specialists (up by 85%), software application developers (up by 60%), and security management specialists (up by 55%).

However, while these industries are growing, entry-level opportunities are declining in areas such as software development and IT. This is because AI now performs many of the tasks associated with those roles. Instead, companies are looking for experienced professionals to take on roles that involve more strategic oversight and innovative problem-solving. But how do recent graduates leapfrog past experienced professionals when there is a lack of entry-level positions to make the transition?

This is another challenge that OPIT addresses in its course design. Students don’t just learn the theory, OPIT actively encourages them to focus on applications, allowing them to build experience while studying. The capstone project consolidates this, enabling students to demonstrate to future employers their expertise at deploying technology to solve problems.

OPIT also has a dynamic Career Services department that specifically works with students to prepare them for the types of roles they want. This focus on not only learning but building a career is one of the elements that makes OPIT stand out in preparing graduates for the workplace.

Read the article