AI investment has become a must in the business world, and companies from all over the globe are embracing this trend. Nearly 90% of organizations plan to put more money into AI by 2025.

One of the main areas of investment is deep learning. The World Economic Forum approves of this initiative, as the cutting-edge technology can boost productivity, optimize cybersecurity, and enhance decision-making.

Knowing that deep learning is making waves is great, but it doesn’t mean much if you don’t understand the basics. Read on for deep learning applications and the most common examples.

Artificial Neural Networks

Once you scratch the surface of deep learning, you’ll see that it’s underpinned by artificial neural networks. That’s why many people refer to deep learning as deep neural networking and deep neural learning.

There are different types of artificial neural networks.

Perceptron

Perceptrons are the most basic form of neural networks. These artificial neurons were originally used for calculating business intelligence or input data capabilities. Nowadays, it’s a linear algorithm that supervises the learning of binary classifiers.

Convolutional Neural Networks

Convolutional neural network machine learning is another common type of deep learning network. It combines input data with learned features before allowing this architecture to analyze images or other 2D data.

The most significant benefit of convolutional neural networks is that they automate feature extraction. As a result, you don’t have to recognize features on your own when classifying pictures or other visuals – the networks extract them directly from the source.

Recurrent Neural Networks

Recurrent neural networks use time series or sequential information. You can find them in many areas, such as natural language processing, image captioning, and language translation. Google Translate, Siri, and many other applications have adopted this technology.

Generative Adversarial Networks

Generative adversarial networks are architecture with two sub-types. The generator model produces new examples, whereas the discriminated model determines if the examples generated are real or fake.

These networks work like so-called game theory scenarios, where generator networks come face-to-face with their adversaries. They generate examples directly, while the adversary (discriminator) tries to tell the difference between these examples and those obtained from training information.

Deep Learning Applications

Deep learning helps take a multitude of technologies to a whole new level.

Computer Vision

The feature that allows computers to obtain useful data from videos and pictures is known as computer vision. An already sophisticated process, deep learning can enhance the technology further.

For instance, you can utilize deep learning to enable machines to understand visuals like humans. They can be trained to automatically filter adult content to make it child-friendly. Likewise, deep learning can enable computers to recognize critical image information, such as logos and food brands.

Natural Language Processing

Artificial intelligence deep learning algorithms spearhead the development and optimization of natural language processing. They automate various processes and platforms, including virtual agents, the analysis of business documents, key phrase indexing, and article summarization.

Speech Recognition

Human speech differs greatly in language, accent, tone, and other key characteristics. This doesn’t stop deep learning from polishing speech recognition software. For instance, Siri is a deep learning-based virtual assistant that can automatically make and recognize calls. Other deep learning programs can transcribe meeting recordings and translate movies to reach wider audiences.

Robotics

Robots are invented to simplify certain tasks (i.e., reduce human input). Deep learning models are perfect for this purpose, as they help manufacturers build advanced robots that replicate human activity. These machines receive timely updates to plan their movements and overcome any obstacles on their way. That’s why they’re common in warehouses, healthcare centers, and manufacturing facilities.

Some of the most famous deep learning-enabled robots are those produced by Boston Dynamics. For example, their robot Atlas is highly agile due to its deep learning architecture. It can move seamlessly and perform dynamic interactions that are common in people.

Autonomous Driving

Self-driving cars are all the rage these days. The autonomous driving industry is expected to generate over $300 billion in revenue by 2035, and most of the credits will go to deep learning.

The producers of these vehicles use deep learning to train cars to respond to real-life traffic scenarios and improve safety. They incorporate different technologies that allow cars to calculate the distance to the nearest objects and navigate crowded streets. The vehicles come with ultra-sensitive cameras and sensors, all of which are powered by deep learning.

Passengers aren’t the only group who will benefit from deep learning-supported self-driving cars. The technology is expected to revolutionize emergency and food delivery services as well.

Deep Learning Algorithms

Numerous deep learning algorithms power the above technologies. Here are the four most common examples.

Backpropagation

Backpropagation is commonly used in neural network training. It starts from so-called “forward propagation,” analyzing its error rate. It feeds the error backward through various network layers, allowing you to optimize the weights (parameters that transform input data within hidden layers).

Stochastic Gradient Descent

The primary purpose of the stochastic gradient descent algorithm is to locate the parameters that allow other machine learning algorithms to operate at their peak efficiency. It’s generally combined with other algorithms, such as backpropagation, to enhance neural network training.

Reinforcement Learning

The reinforcement learning algorithm is trained to resolve multi-layer problems. It experiments with different solutions until it finds the right one. This method draws its decisions from real-life situations.

The reason it’s called reinforcement learning is that it operates on a reward/penalty basis. It aims to maximize rewards to reinforce further training.

Transfer Learning

Transfer learning boils down to recycling pre-configured models to solve new issues. The algorithm uses previously obtained knowledge to make generalizations when facing another problem.

For instance, many deep learning experts use transfer learning to train the system to recognize images. A classifier can use this algorithm to identify pictures of trucks if it’s already analyzed car photos.

Deep Learning Tools

Deep learning tools are platforms that enable you to develop software that lets machines mimic human activity by processing information carefully before making a decision. You can choose from a wide range of such tools.

TensorFlow

Developed in CUDA and C++, TensorFlow is a highly advanced deep learning tool. Google launched this open-source solution to facilitate various deep learning platforms.

Despite being advanced, it can also be used by beginners due to its relatively straightforward interface. It’s perfect for creating cloud, desktop, and mobile machine learning models.

Keras

The Keras API is a Python-based tool with several features for solving machine learning issues. It works with TensorFlow, Thenao, and other tools to optimize your deep learning environment and create robust models.

In most cases, prototyping with Keras is fast and scalable. The API is compatible with convolutional and recurrent networks.

PyTorch

PyTorch is another Python-based tool. It’s also a machine learning library and scripting language that allows you to create neural networks through sophisticated algorithms. You can use the tool on virtually any cloud software, and it delivers distributed training to speed up peer-to-peer updates.

Caffe

Caffe’s framework was launched by Berkeley as an open-source platform. It features an expressive design, which is perfect for propagating cutting-edge applications. Startups, academic institutions, and industries are just some environments where this tool is common.

Theano

Python makes yet another appearance in deep learning tools. Here, it powers Theano, enabling the tool to assess complex mathematical tasks. The software can solve issues that require tremendous computing power and vast quantities of information.

Deep Learning Examples

Deep learning is the go-to solution for creating and maintaining the following technologies.

Image Recognition

Image recognition programs are systems that can recognize specific items, people, or activities in digital photos. Deep learning is the method that enables this functionality. The most well-known example of the use of deep learning for image recognition is in healthcare settings. Radiologists and other professionals can rely on it to analyze and evaluate large numbers of images faster.

Text Generation

There are several subtypes of natural language processing, including text generation. Underpinned by deep learning, it leverages AI to produce different text forms. Examples include machine translations and automatic summarizations.

Self-Driving Cars

As previously mentioned, deep learning is largely responsible for the development of self-driving cars. AutoX might be the most renowned manufacturer of these vehicles.

The Future Lies in Deep Learning

Many up-and-coming technologies will be based on deep learning AI. It’s no surprise, therefore, that nearly 50% of enterprises already use deep learning as the driving force of their products and services. If you want to expand your knowledge about this topic, consider taking a deep learning course. You’ll improve your employment opportunities and further demystify the concept.

Related posts

OPIT’s Peer Career Mentoring Program
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Oct 24, 2025 6 min read

The Open Institute of Technology (OPIT) is the perfect place for those looking to master the core skills and gain the fundamental knowledge they need to enter the exciting and dynamic environment of the tech industry. While OPIT’s various degrees and courses unlock the doors to numerous careers, students may not know exactly which line of work they wish to enter, or how, exactly, to take the next steps.

That’s why, as well as providing exceptional online education in fields like Responsible AI, Computer Science, and Digital Business, OPIT also offers an array of career-related services, like the Peer Career Mentoring Program. Designed to provide the expert advice and support students need, this program helps students and alumni gain inspiration and insight to map out their future careers.

Introducing the OPIT Peer Career Mentoring Program

As the name implies, OPIT’s Peer Career Mentoring Program is about connecting students and alumni with experienced peers to provide insights, guidance, and mentorship and support their next steps on both a personal and professional level.

It provides a highly supportive and empowering space in which current and former learners can receive career-related advice and guidance, harnessing the rich and varied experiences of the OPIT community to accelerate growth and development.

Meet the Mentors

Plenty of experienced, expert mentors have already signed up to play their part in the Peer Career Mentoring Program at OPIT. They include managers, analysts, researchers, and more, all ready and eager to share the benefits of their experience and their unique perspectives on the tech industry, careers in tech, and the educational experience at OPIT.

Examples include:

  • Marco Lorenzi: Having graduated from the MSc in Applied Data Science and AI program at OPIT, Marco has since progressed to a role as a Prompt Engineer at RWS Group and is passionate about supporting younger learners as they take their first steps into the workforce or seek career evolution.
  • Antonio Amendolagine: Antonio graduated from the OPIT MSc in Applied Data Science and AI and currently works as a Product Marketing and CRM Manager with MER MEC SpA, focusing on international B2B businesses. Like other mentors in the program, he enjoys helping students feel more confident about achieving their future aims.
  • Asya Mantovani: Asya took the MSc in Responsible AI program at OPIT before taking the next steps in her career as a Software Engineer with Accenture, one of the largest IT companies in the world, and a trusted partner of the institute. With a firm belief in knowledge-sharing and mutual support, she’s eager to help students progress and succeed.

The Value of the Peer Mentoring Program

The OPIT Peer Career Mentoring Program is an invaluable source of support, inspiration, motivation, and guidance for the many students and graduates of OPIT who feel the need for a helping hand or guiding light to help them find the way or make the right decisions moving forward. It’s a program built around the sharing of wisdom, skills, and insights, designed to empower all who take part.

Every student is different. Some have very clear, fixed, and firm objectives in mind for their futures. Others may have a slightly more vague outline of where they want to go and what they want to do. Others live more in the moment, focusing purely on the here and now, but not thinking too far ahead. All of these different types of people may need guidance and support from time to time, and peer mentoring provides that.

This program is also just one of many ways in which OPIT bridges the gaps between learners around the world, creating a whole community of students and educators, linked together by their shared passions for technology and development. So, even though you may study remotely at OPIT, you never need to feel alone or isolated from your peers.

Additional Career Services Offered by OPIT

The Peer Career Mentoring Program is just one part of the larger array of career services that students enjoy at the Open Institute of Technology.

  • Career Coaching and Support: Students can schedule one-to-one sessions with the institute’s experts to receive insightful feedback, flexibly customized to their exact needs and situation. They can request resume audits, hone their interview skills, and develop action plans for the future, all with the help of experienced, expert coaches.
  • Resource Hub: Maybe you need help differentiating between various career paths, or seeing where your degree might take you. Or you need a bit of assistance in handling the challenges of the job-hunting process. Either way, the OPIT Resource Hub contains the in-depth guides you need to get ahead and gain practical skills to confidently move forward.
  • Career Events: Regularly, OPIT hosts online career event sessions with industry experts and leaders as guest speakers about the topics that most interest today’s tech students and graduates. You can join workshops to sharpen your skills and become a better prospect in the job market, or just listen to the lessons and insights of the pros.
  • Internship Opportunities: There are few better ways to begin your professional journey than an internship at a top-tier company. OPIT unlocks the doors to numerous internship roles with trusted institute partners, as well as additional professional and project opportunities where you can get hands-on work experience at a high level.

In addition to the above, OPIT also teams up with an array of leading organizations around the world, including some of the biggest names, including AWS, Accenture, and Hype. Through this network of trust, OPIT facilitates students’ steps into the world of work.

Start Your Study Journey Today

As well as the Peer Career Mentoring Program, OPIT provides numerous other exciting advantages for those who enroll, including progressive assessments, round-the-clock support, affordable rates, and a team of international professors from top universities with real-world experience in technology. In short, it’s the perfect place to push forward and get the knowledge you need to succeed.

So, if you’re eager to become a tech leader of tomorrow, learn more about OPIT today.

Read the article
The Impact of Artificial Intelligence in Our Society
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Oct 24, 2025 6 min read

The world has entered the age of artificial intelligence (AI), and this exciting new technology is already changing the face of society in an ever-growing number of ways. It’s influencing a plethora of industries and sectors, from healthcare and education to finance and urban planning. This guide explores AI’s impact on three of the core pillars of life: business, education, and sustainability.

AI in Business: Unlocking Unprecedented Opportunities

In the world of business, the number of uses of AI is growing by the day. Whether it’s in sales, marketing, customer relations, operational optimization, cybersecurity, data management, or some other aspect of organizational life, there are so many ways this technology can unlock new opportunities or expedite existing processes.

Take data as an example. Many businesses now collect and use large amounts of data to inform their decisions in areas like product development or marketing strategy. But they have, up to now, been limited in how they can structure, visualize, and analyze their data. AI changes all that, as it can dig into vast databases with ease, extracting insights to drive actionable decisions in no time.

AI also bridges gaps in communications. It has the power to speak in most major languages, translating audio or written text with astonishing accuracy in an instant. In a globalized world, where many businesses buy and sell with partners, suppliers, investors, and other stakeholders from other nations, AI can help them communicate and exchange information more easily and reliably.

AI in Education: Democratizing and Accelerating the Learning Process

In the educational sector, AI is solving problems that have plagued this industry for generations and transforming the ways in which students learn and teachers teach. It can be used, for example, to personalize a student’s learning plan or adapt content to align with each learner’s favored learning style, making it easier for them to soak up and retain information and skills.

AI’s generative capabilities are also proving useful in the education sector. Teachers, for example, can turn to generative AI models to create lesson plans or supplementary content to support their courses, such as tables, charts, infographics, and images. This all helps to make the learning experience more diverse, dynamic, and engaging for every kind of learner.

On a broader level, there’s clear potential for AI to democratize education across the globe, making learning more accessible to all. That includes those in developing nations who may normally lack opportunities to gain knowledge and skills to achieve their ambitions. If harnessed correctly and responsibly, this technology could elevate education to whole new heights.

AI in Sustainability: Smarter Cities and Next-Level Efficiency

Sustainability is one of the sticking points when talking about AI, as many critics of the technology point to the fact that it involves huge amounts of energy and relies heavily on large and costly data centers to operate. At the same time, AI could also solve many of the sustainability crises facing the world today, uncovering solutions and innovations that may have previously taken decades to develop.

It’s already proving its value in this domain. For instance, DeepMind developed an AI system that was actually able to optimize data center energy efficiency, cutting the amount of energy used to cool data center hardware by a whopping 40% and improving energy efficiency in certain centers by 15%. That’s just one example, and it’s only the start of what AI could do from an environmental perspective.

This tech is also making cities smarter, more efficient, and more pleasant in which to live through AI-powered navigation aids or traffic redistribution systems. It also holds potential for future urban planning, city development, and infrastructure construction, provided the correct systems and frameworks can be established to make the best use of AI’s advantages.

The Ethical Challenges and Risks of AI

Despite its almost countless advantages and possible applications, AI is not without its flaws. This technology brings challenges and risks to go along with its opportunities, and five leading examples include:

  • Bias: Algorithmic bias is an issue that has already presented itself during the relatively brief existence of AI so far. Some systems, for example, have issued responses or generated content that could be classified as discriminatory or prejudiced, due to the training data they were given.
  • Privacy: There are fears among populations and analysts about the amount of data being fed into AI systems and how such data could be misused, potentially violating people’s rights of privacy and falling foul of data privacy regulations, such as GDPR.
  • Misuse: Like so many game-changing technologies, AI has the potential to be used for both benevolent and malicious purposes. It may be used to spread misinformation and “fake news,” influence public opinion, or even in cyber-attacks, for instance.
  • Over-reliance: AI is so powerful, with the capacity to carry out tasks with remarkable precision and speed, that it will be tempting for organizations to integrate it into many of their workflows and decision-making processes. But AI cannot be treated as a substitute for human judgment.
  • Sustainability: There are also fears about the energy costs associated with AI and the data centers needed to power it, plus the fact that some elements of the burgeoning AI industry may exploit workers in poorer nations worldwide.

Solving These Challenges: Regulation and Responsible Use of AI

With the right approach, it is possible to solve all the above challenges, and more, making AI the most valuable and beneficial new technology the world has seen since the advent of the internet. This will require a two-pronged strategy focusing on both regulation and responsible usage.

Europe is already leading the way in the first aspect. It has introduced the AI Act – a world-first regulatory framework related to artificial intelligence, laying out how it should be used to drive innovation without infringing on the fundamental rights of workers and the larger public.

Educational institutions like the OPIT – Open Institute of Technology are also leading the way in the second aspect, educating people around the world on how to work with AI in a responsible, ethical way, through programs like the MSc in Responsible Artificial Intelligence.

By establishing rules and regulations about AI’s usage and educating the tech leaders of tomorrow in how to work with AI in a fair and responsible way, the future is bright for this exciting and extraordinary new technology.

Read the article