AI investment has become a must in the business world, and companies from all over the globe are embracing this trend. Nearly 90% of organizations plan to put more money into AI by 2025.

One of the main areas of investment is deep learning. The World Economic Forum approves of this initiative, as the cutting-edge technology can boost productivity, optimize cybersecurity, and enhance decision-making.

Knowing that deep learning is making waves is great, but it doesn’t mean much if you don’t understand the basics. Read on for deep learning applications and the most common examples.

Artificial Neural Networks

Once you scratch the surface of deep learning, you’ll see that it’s underpinned by artificial neural networks. That’s why many people refer to deep learning as deep neural networking and deep neural learning.

There are different types of artificial neural networks.

Perceptron

Perceptrons are the most basic form of neural networks. These artificial neurons were originally used for calculating business intelligence or input data capabilities. Nowadays, it’s a linear algorithm that supervises the learning of binary classifiers.

Convolutional Neural Networks

Convolutional neural network machine learning is another common type of deep learning network. It combines input data with learned features before allowing this architecture to analyze images or other 2D data.

The most significant benefit of convolutional neural networks is that they automate feature extraction. As a result, you don’t have to recognize features on your own when classifying pictures or other visuals – the networks extract them directly from the source.

Recurrent Neural Networks

Recurrent neural networks use time series or sequential information. You can find them in many areas, such as natural language processing, image captioning, and language translation. Google Translate, Siri, and many other applications have adopted this technology.

Generative Adversarial Networks

Generative adversarial networks are architecture with two sub-types. The generator model produces new examples, whereas the discriminated model determines if the examples generated are real or fake.

These networks work like so-called game theory scenarios, where generator networks come face-to-face with their adversaries. They generate examples directly, while the adversary (discriminator) tries to tell the difference between these examples and those obtained from training information.

Deep Learning Applications

Deep learning helps take a multitude of technologies to a whole new level.

Computer Vision

The feature that allows computers to obtain useful data from videos and pictures is known as computer vision. An already sophisticated process, deep learning can enhance the technology further.

For instance, you can utilize deep learning to enable machines to understand visuals like humans. They can be trained to automatically filter adult content to make it child-friendly. Likewise, deep learning can enable computers to recognize critical image information, such as logos and food brands.

Natural Language Processing

Artificial intelligence deep learning algorithms spearhead the development and optimization of natural language processing. They automate various processes and platforms, including virtual agents, the analysis of business documents, key phrase indexing, and article summarization.

Speech Recognition

Human speech differs greatly in language, accent, tone, and other key characteristics. This doesn’t stop deep learning from polishing speech recognition software. For instance, Siri is a deep learning-based virtual assistant that can automatically make and recognize calls. Other deep learning programs can transcribe meeting recordings and translate movies to reach wider audiences.

Robotics

Robots are invented to simplify certain tasks (i.e., reduce human input). Deep learning models are perfect for this purpose, as they help manufacturers build advanced robots that replicate human activity. These machines receive timely updates to plan their movements and overcome any obstacles on their way. That’s why they’re common in warehouses, healthcare centers, and manufacturing facilities.

Some of the most famous deep learning-enabled robots are those produced by Boston Dynamics. For example, their robot Atlas is highly agile due to its deep learning architecture. It can move seamlessly and perform dynamic interactions that are common in people.

Autonomous Driving

Self-driving cars are all the rage these days. The autonomous driving industry is expected to generate over $300 billion in revenue by 2035, and most of the credits will go to deep learning.

The producers of these vehicles use deep learning to train cars to respond to real-life traffic scenarios and improve safety. They incorporate different technologies that allow cars to calculate the distance to the nearest objects and navigate crowded streets. The vehicles come with ultra-sensitive cameras and sensors, all of which are powered by deep learning.

Passengers aren’t the only group who will benefit from deep learning-supported self-driving cars. The technology is expected to revolutionize emergency and food delivery services as well.

Deep Learning Algorithms

Numerous deep learning algorithms power the above technologies. Here are the four most common examples.

Backpropagation

Backpropagation is commonly used in neural network training. It starts from so-called “forward propagation,” analyzing its error rate. It feeds the error backward through various network layers, allowing you to optimize the weights (parameters that transform input data within hidden layers).

Stochastic Gradient Descent

The primary purpose of the stochastic gradient descent algorithm is to locate the parameters that allow other machine learning algorithms to operate at their peak efficiency. It’s generally combined with other algorithms, such as backpropagation, to enhance neural network training.

Reinforcement Learning

The reinforcement learning algorithm is trained to resolve multi-layer problems. It experiments with different solutions until it finds the right one. This method draws its decisions from real-life situations.

The reason it’s called reinforcement learning is that it operates on a reward/penalty basis. It aims to maximize rewards to reinforce further training.

Transfer Learning

Transfer learning boils down to recycling pre-configured models to solve new issues. The algorithm uses previously obtained knowledge to make generalizations when facing another problem.

For instance, many deep learning experts use transfer learning to train the system to recognize images. A classifier can use this algorithm to identify pictures of trucks if it’s already analyzed car photos.

Deep Learning Tools

Deep learning tools are platforms that enable you to develop software that lets machines mimic human activity by processing information carefully before making a decision. You can choose from a wide range of such tools.

TensorFlow

Developed in CUDA and C++, TensorFlow is a highly advanced deep learning tool. Google launched this open-source solution to facilitate various deep learning platforms.

Despite being advanced, it can also be used by beginners due to its relatively straightforward interface. It’s perfect for creating cloud, desktop, and mobile machine learning models.

Keras

The Keras API is a Python-based tool with several features for solving machine learning issues. It works with TensorFlow, Thenao, and other tools to optimize your deep learning environment and create robust models.

In most cases, prototyping with Keras is fast and scalable. The API is compatible with convolutional and recurrent networks.

PyTorch

PyTorch is another Python-based tool. It’s also a machine learning library and scripting language that allows you to create neural networks through sophisticated algorithms. You can use the tool on virtually any cloud software, and it delivers distributed training to speed up peer-to-peer updates.

Caffe

Caffe’s framework was launched by Berkeley as an open-source platform. It features an expressive design, which is perfect for propagating cutting-edge applications. Startups, academic institutions, and industries are just some environments where this tool is common.

Theano

Python makes yet another appearance in deep learning tools. Here, it powers Theano, enabling the tool to assess complex mathematical tasks. The software can solve issues that require tremendous computing power and vast quantities of information.

Deep Learning Examples

Deep learning is the go-to solution for creating and maintaining the following technologies.

Image Recognition

Image recognition programs are systems that can recognize specific items, people, or activities in digital photos. Deep learning is the method that enables this functionality. The most well-known example of the use of deep learning for image recognition is in healthcare settings. Radiologists and other professionals can rely on it to analyze and evaluate large numbers of images faster.

Text Generation

There are several subtypes of natural language processing, including text generation. Underpinned by deep learning, it leverages AI to produce different text forms. Examples include machine translations and automatic summarizations.

Self-Driving Cars

As previously mentioned, deep learning is largely responsible for the development of self-driving cars. AutoX might be the most renowned manufacturer of these vehicles.

The Future Lies in Deep Learning

Many up-and-coming technologies will be based on deep learning AI. It’s no surprise, therefore, that nearly 50% of enterprises already use deep learning as the driving force of their products and services. If you want to expand your knowledge about this topic, consider taking a deep learning course. You’ll improve your employment opportunities and further demystify the concept.

Related posts

OPIT Is Turning 2! What Have We Achieved in the Last 2 Years?
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 7, 2025 6 min read

The Open Institute of Technology (OPIT) is turning two! It has been both a long journey and a whirlwind trip to reach this milestone. But it is also the perfect time to stop and reflect on what we have achieved over the last two years, as well as assess our hopes for the future. Join us as we map our journey over the last two years and look forward to future plans.

July 2023: Launching OPIT

OPIT officially launched as an EU-accredited online higher education institution in July 2023, and offered two core programs: a BSc in Modern Computer Science and an MSc in Applied Data Science and AI. Its first class matriculated in September of that year.

The launch of OPIT was several years in the making. Founder Riccardo Ocleppo was planning OPIT ever since he launched his first company, Docsity, in 2010, an online platform for students to share access to educational resources. As part of working on that project, Ocleppo had the chance to talk to thousands of students and professors and discovered just how big a gap there is between what is taught in universities today and job market demands. Ocleppo felt that this gap was especially wide in the field of computer science, and OPIT was his concept to fill that gap.

The vision was to provide university-level teaching that was accessible around the world through digital learning technologies and that was also affordable. Ocleppo’s vision also involved international professors and building strong relationships with global companies to ensure a truly international and fit-for-purpose learning experience.

One of the most important parts of launching OPIT was the recruitment of the faculty of professors, which Ocleppo was personally involved in. The idea was to build a roster of expert teachers and professionals who were leaders in the field and urge them to unite the teaching fundamentals with real-world applications and experience. The process involved screening more than 5,000 CVs, interviewing over 200 candidates, and recruiting 25 professors to form the core of OPIT’s faculty.

September 2023: The Inaugural Cohort

When OPIT officially launched, its first cohort included 100 students from 38 different countries. Divided between the BSc and MSc courses, students were also allowed to participate in one of two different tracks. Some chose the standard track to accommodate their existing work commitments, while others chose to fast-track to complete their studies sooner.

OPIT was pleased with its success in making the courses international and accessible, with notable representation from Africa. In the first cohort, 40% of MSc students were also from non-STEM fields, showing OPIT’s success at engaging professionals looking to develop skills for the modern workplace.

July 2024: A Growing Curriculum

Building on this initial success, in 2024, OPIT expanded its academic offering to include a second BSc program in Digital Business, and three new MSc programs in Digital Business & Innovation, Responsible Artificial Intelligence, and Enterprise Cybersecurity. These were all offered in addition to the original two programs.

The new course offerings led to total student numbers growing to over 300, hailing from 78 different countries. This also led to an expansion of the faculty, with professionals recruited from major business leaders such as Symantec, Microsoft, PayPal, McKinsey, MIT, Morgan Stanley, Amazon, and U.S. Naval Research. This focus on professional experience and real-world applications is ideal for OPIT as 80% of the student body are active working professionals.

January 2025: First Graduating Class

OPIT held its first-ever graduation ceremony in Valletta, Malta, on March 8, 2025. The ceremony was a hybrid event, with students attending both in person and virtually. The first graduating class consisted of 40 students who received an MSc in Applied Data Science and AI.

OPIT’s MSc programs include a capstone project that sees students apply their learning to real-world challenges. Projects included the use of large language models for the creation of chatbots in the ed-tech field, the digitalization of customer support processes in the paper and non-woven industry, personal data protection systems, AI applications for environmental sustainability, and predictive models for disaster prevention linked to climate change. Since many OPIT students realized their capstone projects within their organizations, OPIT also saw itself successfully facilitating digital innovation in the field.

July 2025: New Learning Environments

The next step for OPIT is not just to teach others how to leverage AI to work smarter, but to start applying AI solutions in our own business environment. To this end, OPIT unveiled its OPIT AI Copilot at the Microsoft AI Agents and the Future of Higher Education event in Milan in June 2025.

The OPIT AI Copilot is a specialist AI Agent designed to enhance learning in OPIT’s fully digital environment. OPIT AI Copilot acts as a personal tutor and study companion, and but rather than being trained on the World Wide Web, it is specifically trained on OPIT’s educational archive of around 3,500 hours of lectures and 3,000 proprietary documents.

The OPIT AI Copilot then provides real-time, personalized guidance that adapts to where the student is in the course and the progress they have shown in grasping the material. As well as pulling from existing materials, the OPIT AI Copilot can generate content to deepen learning, such as code samples and practical exams. It can also answer questions posed by the students with answers grounded in the official course material. The tool is available 24/7, and also has an intelligent examination mode, which prevents cheating.

In this way, OPIT AI Copilot enriches the OPIT learning environment by providing students with 24/7 personalized support for their learning journey, ideal for busy professionals balancing work and study. It is a step towards facing the challenge of “one-size-fits-all” education approaches that have plagued learning institutions for millennia.

September 2025: A New Cohort

On the heels of the OPIT AI Copilot launch, OPIT is excited about recruiting its next round of students, with applications open until September 2025. If you are interested in joining OPIT, you can learn more about its courses here.

Read the article
Authority Magazine: Paola Tirelli of RWS Group on the Future of Artificial Intelligence
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 4, 2025 9 min read

Source:

By Kate Mowbray, 7 min read


“To engage more women in the AI industry, I believe we need to start by highlighting the diversity of roles available. Not all of them are purely technical. AI needs linguists, designers, ethicists, project managers, and many other profiles. Showing that there’s space for different kinds of expertise can make the field feel more accessible. We also need more visible role models: women who are leading, innovating, and mentoring in AI.”

As part of our series about the future of Artificial Intelligence, I had the pleasure of interviewing Paola Tirelli, linguistic AI specialist with RWS Group. Paola is also an MSc in Applied Data Science and AI graduate of OPIT — Open Institute of Technology, a global online educational institution.

With over a decade in translation and project management, Paola is passionate about integrating technology with language services. She considers bridging language barriers and leading teams to success her strength.

Thank you so much for joining us in this interview series! Can you share with us the ‘backstory” of how you decided to pursue this career path in AI?

Mybackground is in linguistics and localization, and I’ve spent years working with translation, quality assurance, and automation tools. I’ve always been fascinated by the intersection of language and technology. The turning point came when I realized I had reached a plateau in my role and felt a strong urge to grow, contribute more meaningfully, and understand the changes reshaping the industry.

That curiosity naturally led me to AI, a space where my linguistic expertise could meet innovation. I began to see how powerful AI could be in solving specific challenges in localization, especially around quality and efficiency. This inspired me to pursue a Master’s in Applied Data Science and AI at OPIT, to deepen my skills and explore how to bridge my domain knowledge with the new tools AI offers.

What lessons can others learn from your story?

It’s never too late to reinvent yourself. You don’t need to have a technical background from the start to enter the AI field. With strong motivation, curiosity, and a willingness to learn, you can go very far.

Embracing your own expertise, whatever it may be, can actually become your greatest asset. AI isn’t just about code and algorithms; it’s about solving real-world problems, and that requires diverse perspectives. If you’re driven by purpose and open to growth, you can not only adapt to change, but you can help shape it.

Can you tell our readers about the most interesting projects you are working on now?

What I find most exciting about my current work is the opportunity to experiment and explore where AI can truly be a game changer in the localization space. I’m particularly interested in projects that would have been unthinkable just a few years ago, initiatives involving massive amounts of data or complex workflows that no client would have considered feasible due to time, cost, or resource constraints. Thanks to AI, we can now approach these challenges in entirely new ways, unlocking value and enabling solutions that were previously out of reach, such as automated terminology extraction or adapting content across different language variants.

None of us are able to achieve success without some help along the way. Is there a particular person who you are grateful towards who helped get you to where you are? Can you share a story about that?

I’m especially grateful to the person who would later become my manager, Marina Pantcheva. At the time, I had already started my Master’s at OPIT and was looking for the right direction to apply what I was learning. I knew I wanted to stay within my company, but I wasn’t sure where to focus.

Then I attended a talk she gave on AI. It was clear, engaging, and incredibly inspiring. It felt like a calling. I knew I wanted to work with her and be part of her team. When I eventually joined the AI team, she believed in my potential from the start. She gave me the space to ask questions, explore ideas, and gradually take on more responsibility. That trust and support made all the difference. It helped me grow into this new field with confidence and purpose.

What are the 5 things that most excite you about the AI industry? Why?

· We’re writing the future — AI is still in its early stages, and we don’t yet know the limits of what it can do. Being part of this journey feels like contributing to something truly transformative.

· Unthinkable opportunities are now possible — Tasks that once required enormous manual effort or were simply out of reach due to scale or complexity are now achievable. AI opens doors to projects that were previously unimaginable.

· Access to knowledge like never before — AI enhances how we interact with information, making it faster and more intuitive to explore, learn, and apply knowledge across domains.

· Cross-disciplinarity — AI touches every field, so it’s full of opportunities for people from different backgrounds.

· Problem-solving at scale — AI can help automate tedious tasks and improve decision-making in complex workflows.

What are the 5 things that concern you about the AI industry? Why?

· AI systems are not 100% reliable, and their outputs can sometimes be inaccurate or misleading. This raises questions about how much we can (or should) trust them, especially in high-stakes contexts.

· As we integrate AI into more aspects of our work and lives, there’s a risk of becoming overly reliant on it, potentially at the expense of human judgment, creativity, and critical thinking.

· If we delegate too much to machines, we may gradually lose some of our own cognitive abilities, like problem-solving, memory, or even language skills, simply because we’re not exercising them as much.

· Without clear communication and reskilling strategies, AI can be perceived as a threat rather than a tool. This fear can create resistance and anxiety, especially in industries undergoing rapid transformation.

· From bias in algorithms to the misuse of generative tools, the ethical challenges are real. We need strong frameworks to ensure AI is developed and used responsibly, with transparency and accountability.

As you know, there is an ongoing debate between prominent scientists, (personified as a debate between Elon Musk and Mark Zuckerberg,) about whether advanced AI poses an existential danger to humanity. What is your position about this?

I think it’s important to separate science fiction from science. While I don’t believe current AI poses an existential threat, I do believe that we need to be very intentional about how we develop and use it. The real risks today are more about misuse, bias, and lack of transparency than about a doomsday scenario.

What can be done to prevent such concerns from materializing? And what can be done to assure the public that there is nothing to be concerned about?

Transparency and education are key. We need to involve more people in the conversation; not just engineers, but also linguists, ethicists, teachers, and everyday users. Clear communication about what AI can and cannot do would help build trust. Regulation also has to catch up with the speed of innovation, without stifling it.

As you know, there are not many women in the AI industry. Can you advise what is needed to engage more women into the AI industry?

My perception is slightly different, because I come from the localization industry, where there’s a strong presence of women. So, when I transitioned into AI, I brought with me a sense of belonging and confidence that not everyone may feel when entering a more male-dominated space.

To engage more women in the AI industry, I believe we need to start by highlighting the diversity of roles available. Not all of them are purely technical. AI needs linguists, designers, ethicists, project managers, and many other profiles. Showing that there’s space for different kinds of expertise can make the field feel more accessible. We also need more visible role models: women who are leading, innovating, and mentoring in AI.

Representation matters. When you see someone like you doing something you thought was out of reach, it becomes easier to imagine yourself there too.

What is your favorite “Life Lesson Quote”? Can you share a story of how that had relevance to your own life?

It’s never too late to be what you might have been,” by George Eliot.

This quote really resonated with me when I decided to shift my career path toward AI. Starting a Master’s in Applied Data Science and AI while working full-time wasn’t easy, but that quote gave me the courage to step into a field that initially felt far from my comfort zone, and to trust that my unique background could actually be a strength, not a limitation.

You are a person of great influence. If you could start a movement that would bring the most amount of good to the most amount of people, what would that be? You never know what your idea can trigger.

If I could start a movement, it would focus on democratizing access to AI education and tools, especially for people from non-technical backgrounds. I truly believe that AI should not be limited to engineers or data scientists. It has the potential to empower professionals from all fields, from linguists to educators to healthcare workers. I’d love to see a world where people feel confident using AI not just as a tool, but as a partner in creativity, problem-solving, and innovation, regardless of their background, gender, or location.

How can our readers further follow your work online?

I usually share updates on LinkedIn: https://www.linkedin.com/in/paola-tirelli-9abbb32a9/

This was very inspiring. Thank you so much for joining us!

Read the full article below:

Read the article