

Today’s tech-driven world is governed by data – so much so that nearly 98% of all organizations are increasing investment in data.
However, company owners can’t put their feet up after improving their data capabilities. They also need a database management system (DBMS) – a program specifically designed for storing and organizing information efficiently.
When analyzing a DBMS, you need to be thorough like a detective investigating a crime. One of the elements you want to consider is DBMS architecture. It describes the structure of your database and how individual bits of information are related to each other. The importance of DBMS architecture is enormous, as it helps IT experts design and maintain fully functional databases.
But what exactly does a DBMS architecture involve? You’ll find out in this entry. Coming up is an in-depth discussion of database system concepts and architecture.
Overview of DBMS Architecture
Suppose you’re assembling your PC. You can opt for several configurations, such as those with three RAM slots and dual-fan coolers. The same principle applies to DBMS architectures.
Two of the most common architectures are three-level and two-level architectures.
Three-Level Architecture
Three-level architecture is like teacher-parent communication. More often than not, a teacher communicates with parents through children, asking them to convey certain information. In other words, there are layers between the two that don’t allow direct communication.
The same holds for three-level architecture. But instead of just one layer, there are two layers between the database and user: application client and application server.
And as the name suggests, a three-level DBMS architecture has three levels:
- External level – Also known as the view level, this section concerns the part of your database that’s relevant to the user. Everything else is hidden.
- Conceptual level – Put yourself in the position of a scuba diver exploring the ocean layer by layer. Once you reach the external level, you go one segment lower and find the conceptual level. It describes information conceptually and tells you how data segments interact with one another.
- Internal level – Another name for the internal level is the physical level. But what does it deal with? It mainly focuses on how data is stored in your system (e.g., using folders and files).
Two-Level Architecture
When you insert a USB into your PC, you can see the information on your interface. However, the source of the data is on the USB, meaning they’re separated.
Two-level architecture takes the same approach to separating data interface and data structure. Here are the two levels in this DBMS architecture:
- User level – Any application and interface in your database are stored on the user level in a two-level DBMS architecture.
- System level – The system level (aka server level) performs transaction management and other essential processes.
Comparison of the Two Architectures
Determining which architecture works best for your database is like buying a car. You need to consider how easy it is to use and the level of performance you can expect.
On the one hand, the biggest advantage of two-level architectures is that they’re relatively easy to set up. There’s just one layer between the database and the user, resulting in easier database management.
On the other hand, developing a three-level DBMS architecture may take a while since you need to include two layers between the database and the user. That said, three-level architectures are normally superior to two-level architectures due to higher flexibility and the ability to incorporate information from various sources.
Components of DBMS Architecture
You’ve scratched the surface of database system concepts and architecture, but don’t stop there. It’s time to move on to the basics to the most important elements of a DBMS architecture:
Data Storage
The fact that DBMS architectures have data storage solutions is carved in stone. What exactly are those solutions? The most common ones are as follows:
- Data files – How many files do you have on your PC? If it’s a lot, you’re doing exactly what administrators of DBMS architectures are doing. A large number of them store data in files, and each file is categorized into blocks.
- Indexes – You want your database operations to be like lightning bolts, i.e. super-fast. You can incorporate indexes to accomplish this goal. They point to data columns for quick retrieval.
- Data dictionary – Also known as system logs, data dictionaries contain metadata – information about your data.
Data Manipulation
A large number of companies still utilize manual data management methods. But using this format is like shooting yourself in the foot when there are advanced data manipulation methods are available. These allow you to process and retrieve data within seconds through different techniques:
- Query processor – Query processing refers to extracting data from your DBMS architecture. It operates like any other multi-stage process. It involves parsing, translation, optimization, and evaluation.
- Query optimizer – A DBMS architecture administrator can perform various query optimization tasks to achieve desired results faster.
- Execution engine – Whenever you want your architecture to do something, you send requests. But something needs to process the requests – that something is the execution engine.
Data Control
We’re continuing our journey through an average DBMS architecture. Our next stop is data control, which is comprised of these key elements:
- Transaction management – When carrying out multiple transactions, how does the system prioritize one over another? The answer lies in transaction management, which is also about processing multiple transactions side by side.
- Concurrency control – Database architecture is like an ocean teeming with life. Countless operations take place simultaneously. As a result, the system needs concurrency control to manage these concurrent tasks.
- Recovery management – What if your DBMS architecture fails? Do you give up on your project? No – the system has robust recovery management tools to retrieve your information and reduce downtime.
Database System Concepts
To give you a better understanding of a DBMS architecture, let’s describe the most important concepts regarding this topic.
Data Models
Data models do to information what your folders do to files – organize them. There are four major types of data models:
- Hierarchical model – Top-down and bottom-up storage solutions are known as hierarchical models. They’re characterized by tree-like structures.
- Network model – Hierarchical models are generally used for basic data relationships. If you want to analyze complex relationships, you need to kick things up a notch with network models. They enable you to represent huge quantities of complex information without a hitch.
- Relational model – Relations are merely tables with values. A relational model is a collection of these relations, indicating how data is connected to other data.
- Object-oriented model – Programming languages regularly use objects. An object-oriented model stores information as models and is usually more complex than other models.
Database Schema and Instances
Another concept you should familiarize yourself with is schemas and instances.
- Definition of schema and instance – Schemas are like summaries, providing a basic description of databases. Instances tell you what information is stored in a database.
- Importance of schema in DBMS architecture – Schemas are essential because they help organize data by providing a clear outline.
Data Independence
The ability of other pieces of information to remain unaffected after you change one bit of data is known as data independence. What are the different types of data independence, and what makes them so important?
- Logical data independence – If you can modify logical schemas without altering the rest of the system, your logical data is independent.
- Physical data independence – Physical data is independent if it remains unaffected when changing your hardware, such as SSD disks.
- Significance of data independence in DBMS architecture – Independent data is crucial for saving time in database management because it reduces the amount of information that needs to be processed.
Efficient Database Management Systems
Database management systems have a lot in common with other tech-based systems. For example, you won’t ignore problems that arise on your PC, be they CPU or graphics card issues. You’ll take action to optimize the performance of the device and solve those issues.
That’s exactly what 75% of developers and administrators of database management systems do. They go the extra mile to enhance the performance, scalability, flexibility, security, and integrity of their architecture.
Performance Optimization Techniques
- Indexing – By pointing to certain data in tables, indexes speed up database management.
- Query optimization – This process is about finding the most efficient method of executing queries.
- Caching – Frequently accessed information is cached to accelerate retrieval.
Scalability and Flexibility
- Horizontal scaling – Horizontal scaling involves increasing the number of servers.
- Vertical scaling – An administrator can boost the performance of the server to make the system more scalable.
- Distributed databases – Databases are like smartphones in that they can easily overload. Pressure can be alleviated with distributed databases, which store information in multiple locations.
Security and Integrity
- Access control – Restricting access is key to preventing cyber security attacks.
- Data encryption – Administrators often encrypt their DBMS architecture to protect sensitive information.
- Backup and recovery – A robust backup plan helps IT experts recover from shutdowns and other unforeseen problems.
Preparing for the Future Is Critical
DBMS architecture is the underlying structure of a database management system. It consists of several elements, all of which work together to create a fully functional data infrastructure.
Understanding the basic elements of DBMS architecture is vital for IT professionals who want to be well-prepared for future changes, such as hybrid environments. As the old saying goes – success depends upon preparation.
Related posts

The Open Institute of Technology (OPIT) began enrolling students in 2023 to help bridge the skills gap between traditional university education and the requirements of the modern workplace. OPIT’s MSc courses aim to help professionals make a greater impact on their workplace through technology.
OPIT’s courses have become popular with business leaders hoping to develop a strong technical foundation to understand technologies, such as artificial intelligence (AI) and cybersecurity, that are shaping their industry. But OPIT is also attracting professionals with strong technical expertise looking to engage more deeply with the strategic side of digital innovation. This is the story of one such student, Obiora Awogu.
Meet Obiora
Obiora Awogu is a cybersecurity expert from Nigeria with a wealth of credentials and experience from working in the industry for a decade. Working in a lead data security role, he was considering “what’s next” for his career. He was contemplating earning an MSc to add to his list of qualifications he did not yet have, but which could open important doors. He discussed the idea with his mentor, who recommended OPIT, where he himself was already enrolled in an MSc program.
Obiora started looking at the program as a box-checking exercise, but quickly realized that it had so much more to offer. As well as being a fully EU-accredited course that could provide new opportunities with companies around the world, he recognized that the course was designed for people like him, who were ready to go from building to leading.
OPIT’s MSc in Cybersecurity
OPIT’s MSc in Cybersecurity launched in 2024 as a fully online and flexible program ideal for busy professionals like Obiora who want to study without taking a career break.
The course integrates technical and leadership expertise, equipping students to not only implement cybersecurity solutions but also lead cybersecurity initiatives. The curriculum combines technical training with real-world applications, emphasizing hands-on experience and soft skills development alongside hard technical know-how.
The course is led by Tom Vazdar, the Area Chair for Cybersecurity at OPIT, as well as the Chief Security Officer at Erste Bank Croatia and an Advisory Board Member for EC3 European Cybercrime Center. He is representative of the type of faculty OPIT recruits, who are both great teachers and active industry professionals dealing with current challenges daily.
Experts such as Matthew Jelavic, the CEO at CIM Chartered Manager Canada and President of Strategy One Consulting; Mahynour Ahmed, Senior Cloud Security Engineer at Grant Thornton LLP; and Sylvester Kaczmarek, former Chief Scientific Officer at We Space Technologies, join him.
Course content includes:
- Cybersecurity fundamentals and governance
- Network security and intrusion detection
- Legal aspects and compliance
- Cryptography and secure communications
- Data analytics and risk management
- Generative AI cybersecurity
- Business resilience and response strategies
- Behavioral cybersecurity
- Cloud and IoT security
- Secure software development
- Critical thinking and problem-solving
- Leadership and communication in cybersecurity
- AI-driven forensic analysis in cybersecurity
As with all OPIT’s MSc courses, it wraps up with a capstone project and dissertation, which sees students apply their skills in the real world, either with their existing company or through apprenticeship programs. This not only gives students hands-on experience, but also helps them demonstrate their added value when seeking new opportunities.
Obiora’s Experience
Speaking of his experience with OPIT, Obiora said that it went above and beyond what he expected. He was not surprised by the technical content, in which he was already well-versed, but rather the change in perspective that the course gave him. It helped him move from seeing himself as someone who implements cybersecurity solutions to someone who could shape strategy at the highest levels of an organization.
OPIT’s MSc has given Obiora the skills to speak to boards, connect risk with business priorities, and build organizations that don’t just defend against cyber risks but adapt to a changing digital world. He commented that studying at OPIT did not give him answers; instead, it gave him better questions and the tools to lead. Of course, it also ticks the MSc box, and while that might not be the main reason for studying at OPIT, it is certainly a clear benefit.
Obiora has now moved into a leading Chief Information Security Officer Role at MoMo, Payment Service Bank for MTN. There, he is building cyber-resilient financial systems, contributing to public-private partnerships, and mentoring the next generation of cybersecurity experts.
Leading Cybersecurity in Africa
As well as having a significant impact within his own organization, studying at OPIT has helped Obiora develop the skills and confidence needed to become a leader in the cybersecurity industry across Africa.
In March 2025, Obiora was featured on the cover of CIO Africa Magazine and was then a panelist on the “Future of Cybersecurity Careers in the Age of Generative AI” for Comercio Ltd. The Lagos Chamber of Commerce and Industry also invited him to speak on Cybersecurity in Africa.
Obiora recently presented the keynote speech at the Hackers Secret Conference 2025 on “Code in the Shadows: Harnessing the Human-AI Partnership in Cybersecurity.” In the talk, he explored how AI is revolutionizing incident response, enhancing its speed, precision, and proactivity, and improving on human-AI collaboration.
An OPIT Success Story
Talking about Obiora’s success, the OPIT Area Chair for Cybersecurity said:
“Obiora is a perfect example of what this program was designed for – experienced professionals ready to scale their impact beyond operations. It’s been inspiring to watch him transform technical excellence into strategic leadership. Africa’s cybersecurity landscape is stronger with people like him at the helm. Bravo, Obiora!”
Learn more about OPIT’s MSc in Cybersecurity and how it can support the next steps of your career.

Open Institute of Technology (OPIT) masterclasses bring students face-to-face with real-world business challenges. In OPIT’s July masterclass, OPIT Professor Francesco Derchi and Ph.D. candidate Robert Mario de Stefano explained the principles of regenerative businesses and how regeneration goes hand in hand with growth.
Regenerative Business Models
Professor Derchi began by explaining what exactly is meant by regenerative business models, clearly differentiating them from sustainable or circular models.
Many companies pursue sustainable business models in which they offset their negative impact by investing elsewhere. For example, businesses that are big carbon consumers will support nature regeneration projects. Circular business models are similar but are more focused on their own product chain, aiming to minimize waste by keeping products in use as long as possible through recycling. Both models essentially aim to have a “net-zero” negative impact on the environment.
Regenerative models are different because they actively aim to have a “net-positive” impact on the environment, not just offsetting their own use but actively regenerating the planet.
Massive Transformative Purpose
While regenerative business models are often associated with philanthropic endeavors, Professor Derchi explained that they do not have to be, and that investment in regeneration can be a driver of growth.
He discussed the importance of corporate purpose in the modern business space. Having a strong and clearly stated corporate purpose is considered essential to drive business decision-making, encourage employee buy-in, and promote customer loyalty.
But today, simple corporate missions, such as “make good shoes,” don’t go far enough. People are looking for a Massive Transformational Purpose (MTP) that can take the business to the next level.
Take, for example, Ben & Jerry’s. The business’s initial corporate purpose may have been to make great ice cream and serve it up in a way that people will enjoy. But the business really began to grow when they embraced an MTP. As they announced in their mission statement, “We believe that ice cream can change the world.” Their business activities also have the aim of advancing human rights and dignity, supporting social and economic justice, and protecting and restoring the Earth’s natural systems. While these aims are philanthropic, they have also helped the business grow.
RePlanet
Professor Derchi next talked about RePlanet, a business he recently worked to develop their MTP. Founded in 2015, RePlanet designs and implements customized renewable energy solutions for businesses and projects. The company already operates in the renewable energy field and ranked as the 21st fastest-growing business in Italy in 2023. So while they were already enjoying great success, Derchi worked with them to see if actively embracing a regenerative business model could unlock additional growth.
Working together, RePlanet moved towards an MTP of building a greener future based on today’s choices, ensuring a cleaner world for generations. Meeting this goal started with the energy products that RePlanet sells, such as energy systems that recover heat from dairy farms. But as the business’s MTP, it goes beyond that. RePlanet doesn’t just engage suppliers; it chooses partners that share its specific values. It also influences the projects they choose to work on – they prioritize high-impact social projects, such as recently installing photovoltaic energy systems at a local hospital in Nigeria – and how RePlanet treats its talent, acknowledging that people are the true energy of the company.
Regenerative Business Strategies
Based on work with RePlanet and other businesses, Derchi has identified six archetypal regenerative business strategies for businesses that want to have both a regenerative impact and drive growth:
- Regenerative Leadership – Laying the foundation for regeneration in a broader sense throughout the company
- Nature Regeneration – Strategies to improve the health of the natural world
- Social Regeneration – Regenerating human ecosystems through things such as fair-trade practices
- Responsible Sourcing – Empowering and strengthening suppliers and their communities
- Health & Well-being – Creating products and services that have a positive effect on customers
- Employee Focus – Improve work conditions, lives, and well-being of employees.
Case Studies
Building on the concept of regenerative business models, Roberto Mario de Stefano shared other case studies of businesses that are having a positive impact and enjoying growth thanks to regenerative business models and strategies.
Biorfarm
Biorfarm is a digital platform that supports small-scale agriculture by creating a direct link between small farmers and consumers. Cutting out the middleman in modern supply chains means that farmers earn about 50% more for their produce. They set consumers up as “digital farmers” who actively support and learn about farming activities to promote more conscious food consumption.
Their vision is to create a food economy in which those who produce food and those who consume it are connected. This moves consumers from passive cash cows for large corporations that prioritize profits over the well-being of farmers to actively supporting natural production and a more sustainable system.
Rifo Lab
Rifo Lab is a circular clothing brand with the vision of addressing the problem of overproduction in the clothing industry. Established in Prato, Italy, a traditional textile-producing area, the company produces clothes made from textile waste and biodegradable materials. There are no physical stores, and all orders must be placed online; everything is made to order, reducing excess production.
With an eye on social regeneration, all production takes place within 30 kilometers of their offices, allowing the business to support ethical and local production. They also work with companies that actively integrate migrants into the local community, sharing their local artisan crafts with future generations.
Ogyre
Ogyre is a digital platform that allows you to pay fishermen to fish for waste. When fishermen are out conducting their livelihood, they also collect a significant amount of waste from the ocean, especially plastic waste. Ogyre arranges for fishermen to get paid for collecting that waste, which in turn supports the local fishing communities, and then transforms the waste collected into new sustainable products.
Moving Towards a Regenerative Future
The masterclass concluded with a Q&A session, where it explained that working in regenerative businesses requires the same skills as any other business. But it also requires you to embrace a mindset where value comes from giving and that growth is about working together for a better future, and not just competition.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: