For most people, identifying objects surrounding them is an easy task.

Let’s say you’re in your office. You can probably casually list objects like desks, computers, filing cabinets, printers, and so on. While this action seems simple on the surface, human vision is actually quite complex.

So, it’s not surprising that computer vision – a relatively new branch of technology aiming to replicate human vision – is equally, if not more, complex.

But before we dive into these complexities, let’s understand the basics – what is computer vision?

Computer vision is an artificial intelligence (AI) field focused on enabling computers to identify and process objects in the visual world. This technology also equips computers to take action and make recommendations based on the visual input they receive.

Simply put, computer vision enables machines to see and understand.

Learning the computer vision definition is just the beginning of understanding this fascinating field. So, let’s explore the ins and outs of computer vision, from fundamental principles to future trends.

History of Computer Vision

While major breakthroughs in computer vision have occurred relatively recently, scientists have been training machines to “see” for over 60 years.

To do the math – the research on computer vision started in the late 1950s.

Interestingly, one of the earliest test subjects wasn’t a computer. Instead, it was a cat! Scientists used a little feline helper to examine how their nerve cells respond to various images. Thanks to this experiment, they concluded that detecting simple shapes is the first stage in image processing.

As AI emerged as an academic field of study in the 1960s, a decade-long quest to help machines mimic human vision officially began.

Since then, there have been several significant milestones in computer vision, AI, and deep learning. Here’s a quick rundown for you:

  • 1970s – Computer vision was used commercially for the first time to help interpret written text for the visually impaired.
  • 1980s – Scientists developed convolutional neural networks (CNNs), a key component in computer vision and image processing.
  • 1990s – Facial recognition tools became highly popular, thanks to a shiny new thing called the internet. For the first time, large sets of images became available online.
  • 2000s – Tagging and annotating visual data sets were standardized.
  • 2010s – Alex Krizhevsky developed a CNN model called AlexNet, drastically reducing the error rate in image recognition (and winning an international image recognition contest in the process).

Today, computer vision algorithms and techniques are rapidly developing and improving. They owe this to an unprecedented amount of visual data and more powerful hardware.

Thanks to these advancements, 99% accuracy has been achieved for computer vision, meaning it’s currently more accurate than human vision at quickly identifying visual inputs.

Fundamentals of Computer Vision

New functionalities are constantly added to the computer vision systems being developed. Still, this doesn’t take away from the same fundamental functions these systems share.

Image Acquisition and Processing

Without visual input, there would be no computer vision. So, let’s start at the beginning.

The image acquisition function first asks the following question: “What imaging device is used to produce the digital image?”

Depending on the device, the resulting data can be a 2D, 3D image, or an image sequence. These images are then processed, allowing the machine to verify whether the visual input contains satisfying data.

Feature Extraction and Representation

The next question then becomes, “What specific features can be extracted from the image?”

By features, we mean measurable pieces of data unique to specific objects in the image.

Feature extraction focuses on extracting lines and edges and localizing interest points like corners and blobs. To successfully extract these features, the machine breaks the initial data set into more manageable chunks.

Object Recognition and Classification

Next, the computer vision system aims to answer: “What objects or object categories are present in the image, and where are they?”

This interpretive technique recognizes and classifies objects based on large amounts of pre-learned objects and object categories.

Image Segmentation and Scene Understanding

Besides observing what is in the image, today’s computer vision systems can act based on those observations.

In image segmentation, computer vision algorithms divide the image into multiple regions and examine the relevant regions separately. This allows them to gain a full understanding of the scene, including the spatial and functional relationships between the present objects.

Motion Analysis and Tracking

Motion analysis studies movements in a sequence of digital images. This technique correlates to motion tracking, which follows the movement of objects of interest. Both techniques are commonly used in manufacturing for monitoring machinery.

Key Techniques and Algorithms in Computer Vision

Computer vision is a fairly complex task. For starters, it needs a huge amount of data. Once the data is all there, the system runs multiple analyses to achieve image recognition.

This might sound simple, but this process isn’t exactly straightforward.

Think of computer vision as a detective solving a crime. What does the detective need to do to identify the criminal? Piece together various clues.

Similarly (albeit with less danger), a computer vision model relies on colors, shapes, and patterns to piece together an object and identify its features.

Let’s discuss the techniques and algorithms this model uses to achieve its end result.

Convolutional Neural Networks (CNNs)

In computer vision, CNNs extract patterns and employ mathematical operations to estimate what image they’re seeing. And that’s all there really is to it. They continue performing the same mathematical operation until they verify the accuracy of their estimate.

Deep Learning and Transfer Learning

The advent of deep learning removed many constraints that prevented computer vision from being widely used. On top of that, (and luckily for computer scientists!), it also eliminated all the tedious manual work.

Essentially, deep learning enables a computer to learn about visual data independently. Computer scientists only need to develop a good algorithm, and the machine will take care of the rest.

Alternatively, computer vision can use a pre-trained model as a starting point. This concept is known as transfer learning.

Edge Detection and Feature Extraction Techniques

Edge detection is one of the most prominent feature extraction techniques.

As the name suggests, it can identify the boundaries of an object and extract its features. As always, the ultimate goal is identifying the object in the picture. To achieve this, edge detection uses an algorithm that identifies differences in pixel brightness (after transforming the data into a grayscale image).

Optical Flow and Motion Estimation

Optical flow is a computer vision technique that determines how each point of an image or video sequence is moving compared to the image plane. This technique can estimate how fast objects are moving.

Motion estimation, on the other hand, predicts the location of objects in subsequent frames of a video sequence.

These techniques are used in object tracking and autonomous navigation.

Image Registration and Stitching

Image registration and stitching are computer vision techniques used to combine multiple images. Image registration is responsible for aligning these images, while image stitching overlaps them to produce a single image. Medical professionals use these techniques to track the progress of a disease.

Applications of Computer Vision

Thanks to many technological advances in the field, computer vision has managed to surpass human vision in several regards. As a result, it’s used in various applications across multiple industries.

Robotics and Automation

Improving robotics was one of the original reasons for developing computer vision. So, it isn’t surprising this technique is used extensively in robotics and automation.

Computer vision can be used to:

  • Control and automate industrial processes
  • Perform automatic inspections in manufacturing applications
  • Identify product and machine defects in real time
  • Operate autonomous vehicles
  • Operate drones (and capture aerial imaging)

Security and Surveillance

Computer vision has numerous applications in video surveillance, including:

  • Facial recognition for identification purposes
  • Anomaly detection for spotting unusual patterns
  • People counting for retail analytics
  • Crowd monitoring for public safety

Healthcare and Medical Imaging

Healthcare is one of the most prominent fields of computer vision applications. Here, this technology is employed to:

  • Establish more accurate disease diagnoses
  • Analyze MRI, CAT, and X-ray scans
  • Enhance medical images interpreted by humans
  • Assist surgeons during surgery

Entertainment and Gaming

Computer vision techniques are highly useful in the entertainment industry, supporting the creation of visual effects and motion capture for animation.

Good news for gamers, too – computer vision aids augmented and virtual reality in creating the ultimate gaming experience.

Retail and E-Commerce

Self-check-out points can significantly enhance the shopping experience. And guess what can help establish them? That’s right – computer vision. But that’s not all. This technology also helps retailers with inventory management, allowing quicker detection of out-of-stock products.

In e-commerce, computer vision facilitates visual search and product recommendation, streamlining the (often frustrating) online purchasing process.

Challenges and Limitations of Computer Vision

There’s no doubt computer vision has experienced some major breakthroughs in recent years. Still, no technology is without flaws.

Here are some of the challenges that computer scientists hope to overcome in the near future:

  • The data for training computer vision models often lack in quantity or quality.
  • There’s a need for more specialists who can train and monitor computer vision models.
  • Computers still struggle to process incomplete, distorted, and previously unseen visual data.
  • Building computer vision systems is still complex, time-consuming, and costly.
  • Many people have privacy and ethical concerns surrounding computer vision, especially for surveillance.

Future Trends and Developments in Computer Vision

As the field of computer vision continues to develop, there should be no shortage of changes and improvements.

These include integration with other AI technologies (such as neuro-symbolic and explainable AI), which will continue to evolve as developing hardware adds new capabilities and capacities that enhance computer vision. Each advancement brings with it the opportunity for other industries (and more complex applications). Construction gives us a good example, as computer vision takes us away from the days of relying on hard hats and signage, moving us toward a future in which computers can actively detect, and alert site foremen too, unsafe behavior.

The Future Looks Bright for Computer Vision

Computer vision is one of the most remarkable concepts in the world of deep learning and artificial intelligence. This field will undoubtedly continue to grow at an impressive speed, both in terms of research and applications.

Are you interested in further research and professional development in this field? If yes, consider seeking out high-quality education in computer vision.

Related posts

Wired: Think Twice Before Creating That ChatGPT Action Figure
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
May 12, 2025 6 min read

Source:

  • Wired, published on May 01st, 2025

People are using ChatGPT’s new image generator to take part in viral social media trends. But using it also puts your privacy at risk—unless you take a few simple steps to protect yourself.

By Kate O’Flaherty

At the start of April, an influx of action figures started appearing on social media sites including LinkedIn and X. Each figure depicted the person who had created it with uncanny accuracy, complete with personalized accessories such as reusable coffee cups, yoga mats, and headphones.

All this is possible because of OpenAI’s new GPT-4o-powered image generator, which supercharges ChatGPT’s ability to edit pictures, render text, and more. OpenAI’s ChatGPT image generator can also create pictures in the style of Japanese animated film company Studio Ghibli—a trend that quickly went viral, too.

The images are fun and easy to make—all you need is a free ChatGPT account and a photo. Yet to create an action figure or Studio Ghibli-style image, you also need to hand over a lot of data to OpenAI, which could be used to train its models.

Hidden Data

The data you are giving away when you use an AI image editor is often hidden. Every time you upload an image to ChatGPT, you’re potentially handing over “an entire bundle of metadata,” says Tom Vazdar, area chair for cybersecurity at Open Institute of Technology. “That includes the EXIF data attached to the image file, such as the time the photo was taken and the GPS coordinates of where it was shot.”

OpenAI also collects data about the device you’re using to access the platform. That means your device type, operating system, browser version, and unique identifiers, says Vazdar. “And because platforms like ChatGPT operate conversationally, there’s also behavioral data, such as what you typed, what kind of images you asked for, how you interacted with the interface and the frequency of those actions.”

It’s not just your face. If you upload a high-resolution photo, you’re giving OpenAI whatever else is in the image, too—the background, other people, things in your room and anything readable such as documents or badges, says Camden Woollven, group head of AI product marketing at risk management firm GRC International Group.

This type of voluntarily provided, consent-backed data is “a gold mine for training generative models,” especially multimodal ones that rely on visual inputs, says Vazdar.

OpenAI denies it is orchestrating viral photo trends as a ploy to collect user data, yet the firm certainly gains an advantage from it. OpenAI doesn’t need to scrape the web for your face if you’re happily uploading it yourself, Vazdar points out. “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

OpenAI says it does not actively seek out personal information to train models—and it doesn’t use public data on the internet to build profiles about people to advertise to them or sell their data, an OpenAI spokesperson tells WIRED. However, under OpenAI’s current privacy policy, images submitted through ChatGPT can be retained and used to improve its models.

Any data, prompts, or requests you share helps teach the algorithm—and personalized information helps fine tune it further, says Jake Moore, global cybersecurity adviser at security outfit ESET, who created his own action figure to demonstrate the privacy risks of the trend on LinkedIn.

Uncanny Likeness

In some markets, your photos are protected by regulation. In the UK and EU, data-protection regulation including the GDPR offer strong protections, including the right to access or delete your data. At the same time, use of biometric data requires explicit consent.

However, photographs become biometric data only when processed through a specific technical means allowing the unique identification of a specific individual, says Melissa Hall, senior associate at law firm MFMac. Processing an image to create a cartoon version of the subject in the original photograph is “unlikely to meet this definition,” she says.

Meanwhile, in the US, privacy protections vary. “California and Illinois are leading with stronger data protection laws, but there is no standard position across all US states,” says Annalisa Checchi, a partner at IP law firm Ionic Legal. And OpenAI’s privacy policy doesn’t contain an explicit carve-out for likeness or biometric data, which “creates a grey area for stylized facial uploads,” Checchi says.

The risks include your image or likeness being retained, potentially used to train future models, or combined with other data for profiling, says Checchi. “While these platforms often prioritize safety, the long-term use of your likeness is still poorly understood—and hard to retract once uploaded.”

OpenAI says its users’ privacy and security is a top priority. The firm wants its AI models to learn about the world, not private individuals, and it actively minimizes the collection of personal information, an OpenAI spokesperson tells WIRED.

Meanwhile, users have control over how their data is used, with self-service tools to access, export, or delete personal information. You can also opt out of having content used to improve models, according to OpenAI.

ChatGPT Free, Plus, and Pro users can control whether they contribute to future model improvements in their data controls settings. OpenAI does not train on ChatGPT Team, Enterprise, and Edu customer data⁠ by default, according to the company.

Read the full article below:

Read the article
LADBible and Yahoo News: Viral AI trend could present huge privacy concerns, says expert
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
May 12, 2025 4 min read

Source:


You’ve probably seen them all over Instagram

By James Moorhouse

Experts have warned against participating in a viral social media trend which sees people use ChatGPT to create an action figure version of themselves.

If you’ve spent any time whatsoever doomscrolling on Instagram or TikTok or dare I say it, LinkedIn recently, you’ll be all too aware of the viral trend.

Obviously, there’s nothing more entertaining and frivolous than seeing AI generated versions of your co-workers and their cute little laptops and piña coladas, but it turns out that it might not be the best idea to take part.

There may well be some benefits to artificial intelligence but often it can produce some pretty disturbing results. Earlier this year, a lad from Norway sued ChatGPT after it falsely claimed he had been convicted of killing two of his kids.

Unfortunately, if you don’t like AI, then you’re going to have to accept that it’s going to become a regular part of our lives. You only need to look at WhatsApp or Facebook messenger to realise that. But it’s always worth saying please and thank you to ChatGPT just in case society does collapse and the AI robots take over, in the hope that they treat you mercifully. Although it might cost them a little more electricity.

Anyway, in case you’re thinking of getting involved in this latest AI trend and sharing your face and your favourite hobbies with a high tech robot, maybe don’t. You don’t want to end up starring in your own Netflix series, à la Black Mirror.

Tom Vazdar, area chair for cybersecurity at Open Institute of Technology, spoke with Wired about some of the dangers of sharing personal details about yourself with AI.

Every time you upload an image to ChatGPT, you’re potentially handing over ‘an entire bundle of metadata’ he revealed.

Vazdar added: “That includes the EXIF data attached to the image file, such as the time the photo was taken and the GPS coordinates of where it was shot.

“Because platforms like ChatGPT operate conversationally, there’s also behavioural data, such as what you typed, what kind of images you asked for, how you interacted with the interface and the frequency of those actions.”

Essentially, if you upload a photo of your face, you’re not just giving AI access to your face, but also the whatever is in the background, such as the location or other people that might feature.

Vazdar concluded: “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

While we’re at it, maybe stop using ChatGPT for your university essays and general basic questions you can find the answer to on Google as well. The last thing you need is AI knowing you don’t know how to do something basic if it does takeover the world.

Read the full article below:

Read the article