For most people, identifying objects surrounding them is an easy task.

Let’s say you’re in your office. You can probably casually list objects like desks, computers, filing cabinets, printers, and so on. While this action seems simple on the surface, human vision is actually quite complex.

So, it’s not surprising that computer vision – a relatively new branch of technology aiming to replicate human vision – is equally, if not more, complex.

But before we dive into these complexities, let’s understand the basics – what is computer vision?

Computer vision is an artificial intelligence (AI) field focused on enabling computers to identify and process objects in the visual world. This technology also equips computers to take action and make recommendations based on the visual input they receive.

Simply put, computer vision enables machines to see and understand.

Learning the computer vision definition is just the beginning of understanding this fascinating field. So, let’s explore the ins and outs of computer vision, from fundamental principles to future trends.

History of Computer Vision

While major breakthroughs in computer vision have occurred relatively recently, scientists have been training machines to “see” for over 60 years.

To do the math – the research on computer vision started in the late 1950s.

Interestingly, one of the earliest test subjects wasn’t a computer. Instead, it was a cat! Scientists used a little feline helper to examine how their nerve cells respond to various images. Thanks to this experiment, they concluded that detecting simple shapes is the first stage in image processing.

As AI emerged as an academic field of study in the 1960s, a decade-long quest to help machines mimic human vision officially began.

Since then, there have been several significant milestones in computer vision, AI, and deep learning. Here’s a quick rundown for you:

  • 1970s – Computer vision was used commercially for the first time to help interpret written text for the visually impaired.
  • 1980s – Scientists developed convolutional neural networks (CNNs), a key component in computer vision and image processing.
  • 1990s – Facial recognition tools became highly popular, thanks to a shiny new thing called the internet. For the first time, large sets of images became available online.
  • 2000s – Tagging and annotating visual data sets were standardized.
  • 2010s – Alex Krizhevsky developed a CNN model called AlexNet, drastically reducing the error rate in image recognition (and winning an international image recognition contest in the process).

Today, computer vision algorithms and techniques are rapidly developing and improving. They owe this to an unprecedented amount of visual data and more powerful hardware.

Thanks to these advancements, 99% accuracy has been achieved for computer vision, meaning it’s currently more accurate than human vision at quickly identifying visual inputs.

Fundamentals of Computer Vision

New functionalities are constantly added to the computer vision systems being developed. Still, this doesn’t take away from the same fundamental functions these systems share.

Image Acquisition and Processing

Without visual input, there would be no computer vision. So, let’s start at the beginning.

The image acquisition function first asks the following question: “What imaging device is used to produce the digital image?”

Depending on the device, the resulting data can be a 2D, 3D image, or an image sequence. These images are then processed, allowing the machine to verify whether the visual input contains satisfying data.

Feature Extraction and Representation

The next question then becomes, “What specific features can be extracted from the image?”

By features, we mean measurable pieces of data unique to specific objects in the image.

Feature extraction focuses on extracting lines and edges and localizing interest points like corners and blobs. To successfully extract these features, the machine breaks the initial data set into more manageable chunks.

Object Recognition and Classification

Next, the computer vision system aims to answer: “What objects or object categories are present in the image, and where are they?”

This interpretive technique recognizes and classifies objects based on large amounts of pre-learned objects and object categories.

Image Segmentation and Scene Understanding

Besides observing what is in the image, today’s computer vision systems can act based on those observations.

In image segmentation, computer vision algorithms divide the image into multiple regions and examine the relevant regions separately. This allows them to gain a full understanding of the scene, including the spatial and functional relationships between the present objects.

Motion Analysis and Tracking

Motion analysis studies movements in a sequence of digital images. This technique correlates to motion tracking, which follows the movement of objects of interest. Both techniques are commonly used in manufacturing for monitoring machinery.

Key Techniques and Algorithms in Computer Vision

Computer vision is a fairly complex task. For starters, it needs a huge amount of data. Once the data is all there, the system runs multiple analyses to achieve image recognition.

This might sound simple, but this process isn’t exactly straightforward.

Think of computer vision as a detective solving a crime. What does the detective need to do to identify the criminal? Piece together various clues.

Similarly (albeit with less danger), a computer vision model relies on colors, shapes, and patterns to piece together an object and identify its features.

Let’s discuss the techniques and algorithms this model uses to achieve its end result.

Convolutional Neural Networks (CNNs)

In computer vision, CNNs extract patterns and employ mathematical operations to estimate what image they’re seeing. And that’s all there really is to it. They continue performing the same mathematical operation until they verify the accuracy of their estimate.

Deep Learning and Transfer Learning

The advent of deep learning removed many constraints that prevented computer vision from being widely used. On top of that, (and luckily for computer scientists!), it also eliminated all the tedious manual work.

Essentially, deep learning enables a computer to learn about visual data independently. Computer scientists only need to develop a good algorithm, and the machine will take care of the rest.

Alternatively, computer vision can use a pre-trained model as a starting point. This concept is known as transfer learning.

Edge Detection and Feature Extraction Techniques

Edge detection is one of the most prominent feature extraction techniques.

As the name suggests, it can identify the boundaries of an object and extract its features. As always, the ultimate goal is identifying the object in the picture. To achieve this, edge detection uses an algorithm that identifies differences in pixel brightness (after transforming the data into a grayscale image).

Optical Flow and Motion Estimation

Optical flow is a computer vision technique that determines how each point of an image or video sequence is moving compared to the image plane. This technique can estimate how fast objects are moving.

Motion estimation, on the other hand, predicts the location of objects in subsequent frames of a video sequence.

These techniques are used in object tracking and autonomous navigation.

Image Registration and Stitching

Image registration and stitching are computer vision techniques used to combine multiple images. Image registration is responsible for aligning these images, while image stitching overlaps them to produce a single image. Medical professionals use these techniques to track the progress of a disease.

Applications of Computer Vision

Thanks to many technological advances in the field, computer vision has managed to surpass human vision in several regards. As a result, it’s used in various applications across multiple industries.

Robotics and Automation

Improving robotics was one of the original reasons for developing computer vision. So, it isn’t surprising this technique is used extensively in robotics and automation.

Computer vision can be used to:

  • Control and automate industrial processes
  • Perform automatic inspections in manufacturing applications
  • Identify product and machine defects in real time
  • Operate autonomous vehicles
  • Operate drones (and capture aerial imaging)

Security and Surveillance

Computer vision has numerous applications in video surveillance, including:

  • Facial recognition for identification purposes
  • Anomaly detection for spotting unusual patterns
  • People counting for retail analytics
  • Crowd monitoring for public safety

Healthcare and Medical Imaging

Healthcare is one of the most prominent fields of computer vision applications. Here, this technology is employed to:

  • Establish more accurate disease diagnoses
  • Analyze MRI, CAT, and X-ray scans
  • Enhance medical images interpreted by humans
  • Assist surgeons during surgery

Entertainment and Gaming

Computer vision techniques are highly useful in the entertainment industry, supporting the creation of visual effects and motion capture for animation.

Good news for gamers, too – computer vision aids augmented and virtual reality in creating the ultimate gaming experience.

Retail and E-Commerce

Self-check-out points can significantly enhance the shopping experience. And guess what can help establish them? That’s right – computer vision. But that’s not all. This technology also helps retailers with inventory management, allowing quicker detection of out-of-stock products.

In e-commerce, computer vision facilitates visual search and product recommendation, streamlining the (often frustrating) online purchasing process.

Challenges and Limitations of Computer Vision

There’s no doubt computer vision has experienced some major breakthroughs in recent years. Still, no technology is without flaws.

Here are some of the challenges that computer scientists hope to overcome in the near future:

  • The data for training computer vision models often lack in quantity or quality.
  • There’s a need for more specialists who can train and monitor computer vision models.
  • Computers still struggle to process incomplete, distorted, and previously unseen visual data.
  • Building computer vision systems is still complex, time-consuming, and costly.
  • Many people have privacy and ethical concerns surrounding computer vision, especially for surveillance.

Future Trends and Developments in Computer Vision

As the field of computer vision continues to develop, there should be no shortage of changes and improvements.

These include integration with other AI technologies (such as neuro-symbolic and explainable AI), which will continue to evolve as developing hardware adds new capabilities and capacities that enhance computer vision. Each advancement brings with it the opportunity for other industries (and more complex applications). Construction gives us a good example, as computer vision takes us away from the days of relying on hard hats and signage, moving us toward a future in which computers can actively detect, and alert site foremen too, unsafe behavior.

The Future Looks Bright for Computer Vision

Computer vision is one of the most remarkable concepts in the world of deep learning and artificial intelligence. This field will undoubtedly continue to grow at an impressive speed, both in terms of research and applications.

Are you interested in further research and professional development in this field? If yes, consider seeking out high-quality education in computer vision.

Related posts

Cyber Threat Landscape 2024: Human-Centric Cyber Threats
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2024 9 min read

Human-centric cyber threats have long posed a serious issue for organizations. After all, humans are often the weakest link in the cybersecurity chain. Unfortunately, when artificial intelligence came into the mix, it only made these threats even more dangerous.

So, what can be done about these cyber threats now?

That’s precisely what we asked Tom Vazdar, the chair of the Enterprise Cybersecurity Master’s program at the Open Institute of Technology (OPIT), and Venicia Solomons, aka the “Cyber Queen.”

They dedicated a significant portion of their “Cyber Threat Landscape 2024: Navigating New Risks” master class to AI-powered human-centric cyber threats. So, let’s see what these two experts have to say on the topic.

Human-Centric Cyber Threats 101

Before exploring how AI impacted human-centric cyber threats, let’s go back to the basics. What are human-centric cyber threats?

As you might conclude from the name, human-centric cyber threats are cybersecurity risks that exploit human behavior or vulnerabilities (e.g., fear). Even if you haven’t heard of the term “human-centric cyber threats,” you’ve probably heard of (or even experienced) the threats themselves.

The most common of these threats are phishing attacks, which rely on deceptive emails to trick users into revealing confidential information (or clicking on malicious links). The result? Stolen credentials, ransomware infections, and general IT chaos.

How Has AI Impacted Human-Centric Cyber Threats?

AI has infiltrated virtually every cybersecurity sector. Social engineering is no different.

As mentioned, AI has made human-centric cyber threats substantially more dangerous. How? By making them difficult to spot.

In Venicia’s words, AI has allowed “a more personalized and convincing social engineering attack.”

In terms of email phishing, malicious actors use AI to write “beautifully crafted emails,” as Tom puts it. These emails contain no grammatical errors and can mimic the sender’s writing style, making them appear more legitimate and harder to identify as fraudulent.

These highly targeted AI-powered phishing emails are no longer considered “regular” phishing attacks but spear phishing emails, which are significantly more likely to fool their targets.

Unfortunately, it doesn’t stop there.

As AI technology advances, its capabilities go far beyond crafting a simple email. Venicia warns that AI-powered voice technology can even create convincing voice messages or phone calls that sound exactly like a trusted individual, such as a colleague, supervisor, or even the CEO of the company. Obey the instructions from these phone calls, and you’ll likely put your organization in harm’s way.

How to Counter AI-Powered Human-Centric Cyber Threats

Given how advanced human-centric cyber threats have gotten, one logical question arises – how can organizations counter them? Luckily, there are several ways to do this. Some rely on technology to detect and mitigate threats. However, most of them strive to correct what caused the issue in the first place – human behavior.

Enhancing Email Security Measures

The first step in countering the most common human-centric cyber threats is a given for everyone, from individuals to organizations. You must enhance your email security measures.

Tom provides a brief overview of how you can do this.

No. 1 – you need a reliable filtering solution. For Gmail users, there’s already one such solution in place.

No. 2 – organizations should take full advantage of phishing filters. Before, only spam filters existed, so this is a major upgrade in email security.

And No. 3 – you should consider implementing DMARC (Domain-based Message Authentication, Reporting, and Conformance) to prevent email spoofing and phishing attacks.

Keeping Up With System Updates

Another “technical” move you can make to counter AI-powered human-centric cyber threats is to ensure all your systems are regularly updated. Fail to keep up with software updates and patches, and you’re looking at a strong possibility of facing zero-day attacks. Zero-day attacks are particularly dangerous because they exploit vulnerabilities that are unknown to the software vendor, making them difficult to defend against.

Top of Form

Nurturing a Culture of Skepticism

The key component of the human-centric cyber threats is, in fact, humans. That’s why they should also be the key component in countering these threats.

At an organizational level, numerous steps are needed to minimize the risks of employees falling for these threats. But it all starts with what Tom refers to as a “culture of skepticism.”

Employees should constantly be suspicious of any unsolicited emails, messages, or requests for sensitive information.

They should always ask themselves – who is sending this, and why are they doing so?

This is especially important if the correspondence comes from a seemingly trusted source. As Tom puts it, “Don’t click immediately on a link that somebody sent you because you are familiar with the name.” He labels this as the “Rule No. 1” of cybersecurity awareness.

Growing the Cybersecurity Culture

The ultra-specific culture of skepticism will help create a more security-conscious workforce. But it’s far from enough to make a fundamental change in how employees perceive (and respond to) threats. For that, you need a strong cybersecurity culture.

Tom links this culture to the corporate culture. The organization’s mission, vision, statement of purpose, and values that shape the corporate culture should also be applicable to cybersecurity. Of course, this isn’t something companies can do overnight. They must grow and nurture this culture if they are to see any meaningful results.

According to Tom, it will probably take at least 18 months before these results start to show.

During this time, organizations must work on strengthening the relationships between every department, focusing on the human resources and security sectors. These two sectors should be the ones to primarily grow the cybersecurity culture within the company, as they’re well versed in the two pillars of this culture – human behavior and cybersecurity.

However, this strong interdepartmental relationship is important for another reason.

As Tom puts it, “[As humans], we cannot do anything by ourselves. But as a collective, with the help within the organization, we can.”

Staying Educated

The world of AI and cybersecurity have one thing in common – they never sleep. The only way to keep up with these ever-evolving worlds is to stay educated.

The best practice would be to gain a solid base by completing a comprehensive program, such as OPIT’s Enterprise Cybersecurity Master’s program. Then, it’s all about continuously learning about new developments, trends, and threats in AI and cybersecurity.

Conducting Regular Training

For most people, it’s not enough to just explain how human-centric cyber threats work. They must see them in action. Especially since many people believe that phishing attacks won’t happen to them or, if they do, they simply won’t fall for them. Unfortunately, neither of these are true.

Approximately 3.4 billion phishing emails are sent each day, and millions of them successfully bypass all email authentication methods. With such high figures, developing critical thinking among the employees is the No. 1 priority. After all, humans are the first line of defense against cyber threats.

But humans must be properly trained to counter these cyber threats. This training includes the organization’s security department sending fake phishing emails to employees to test their vigilance. Venicia calls employees who fall for these emails “clickers” and adds that no one wants to be a clicker. So, they do everything in their power to avoid falling for similar attacks in the future.

However, the key to successful employee training in this area also involves avoiding sending similar fake emails. If the company keeps trying to trick the employees in the same way, they’ll likely become desensitized and less likely to take real threats seriously.

So, Tom proposes including gamification in the training. This way, the training can be more engaging and interactive, encouraging employees to actively participate and learn. Interestingly, AI can be a powerful ally here, helping create realistic scenarios and personalized learning experiences based on employee responses.

Following in the Competitors’ Footsteps

When it comes to cybersecurity, it’s crucial to be proactive rather than reactive. Even if an organization hasn’t had issues with cyberattacks, it doesn’t mean it will stay this way. So, the best course of action is to monitor what competitors are doing in this field.

However, organizations shouldn’t stop with their competitors. They should also study other real-world social engineering incidents that might give them valuable insights into the tactics used by the malicious actors.

Tom advises visiting the many open-source databases reporting on these incidents and using the data to build an internal educational program. This gives organizations a chance to learn from other people’s mistakes and potentially prevent those mistakes from happening within their ecosystem.

Stay Vigilant

It’s perfectly natural for humans to feel curiosity when it comes to new information, anxiety regarding urgent-looking emails, and trust when seeing a familiar name pop up on the screen. But in the world of cybersecurity, these basic human emotions can cause a lot of trouble. That is, at least, when humans act on them.

So, organizations must work on correcting human behaviors, not suppressing basic human emotions. By doing so, they can help employees develop a more critical mindset when interacting with digital communications. The result? A cyber-aware workforce that’s well-equipped to recognize and respond to phishing attacks and other cyber threats appropriately.

Read the article
Cyber Threat Landscape 2024: The AI Revolution in Cybersecurity
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2024 9 min read

There’s no doubt about it – artificial intelligence has revolutionized almost every aspect of modern life. Healthcare, finance, and manufacturing are just some of the sectors that have been virtually turned upside down by this powerful new force. Cybersecurity also ranks high on this list.

But as much as AI can benefit cybersecurity, it also presents new challenges. Or – to be more direct –new threats.

To understand just how serious these threats are, we’ve enlisted the help of two prominent figures in the cybersecurity world – Tom Vazdar and Venicia Solomons. Tom is the chair of the Master’s Degree in Enterprise Cybersecurity program at the Open Institute of Technology (OPIT). Venicia, better known as the “Cyber Queen,” runs a widely successful cybersecurity community looking to empower women to succeed in the industry.

Together, they held a master class titled “Cyber Threat Landscape 2024: Navigating New Risks.” In this article, you get the chance to hear all about the double-edged sword that is AI in cybersecurity.

How Can Organizations Benefit From Using AI in Cybersecurity?

As with any new invention, AI has primarily been developed to benefit people. In the case of AI, this mainly refers to enhancing efficiency, accuracy, and automation in tasks that would be challenging or impossible for people to perform alone.

However, as AI technology evolves, its potential for both positive and negative impacts becomes more apparent.

But just because the ugly side of AI has started to rear its head more dramatically, it doesn’t mean we should abandon the technology altogether. The key, according to Venicia, is in finding a balance. And according to Tom, this balance lies in treating AI the same way you would cybersecurity in general.

Keep reading to learn what this means.

Top of Form

Implement a Governance Framework

In cybersecurity, there is a governance framework called ISO/IEC 27000, whose goal is to provide a systematic approach to managing sensitive company information, ensuring it remains secure. A similar framework has recently been created for AI— ISO/IEC 42001.

Now, the trouble lies in the fact that many organizations “don’t even have cybersecurity, not to speak artificial intelligence,” as Tom puts it. But the truth is that they need both if they want to have a chance at managing the risks and complexities associated with AI technology, thus only reaping its benefits.

Implement an Oversight Mechanism

Fearing the risks of AI in cybersecurity, many organizations chose to forbid the usage of this technology outright within their operations. But by doing so, they also miss out on the significant benefits AI can offer in enhancing cybersecurity defenses.

So, an all-out ban on AI isn’t a solution. A well-thought-out oversight mechanism is.

According to Tom, this control framework should dictate how and when an organization uses cybersecurity and AI and when these two fields are to come in contact. It should also answer the questions of how an organization governs AI and ensures transparency.

With both of these frameworks (governance and oversight), it’s not enough to simply implement new mechanisms. Employees should also be educated and regularly trained to uphold the principles outlined in these frameworks.

Control the AI (Not the Other Way Around!)

When it comes to relying on AI, one principle should be every organization’s guiding light. Control the AI; don’t let the AI control you.

Of course, this includes controlling how the company’s employees use AI when interacting with client data, business secrets, and other sensitive information.

Now, the thing is – people don’t like to be controlled.

But without control, things can go off the rails pretty quickly.

Tom gives just one example of this. In 2022, an improperly trained (and controlled) chatbot gave an Air Canada customer inaccurate information and a non-existing discount. As a result, the customer bought a full-price ticket. A lawsuit ensued, and in 2024, the court ruled in the customer’s favor, ordering Air Canada to pay compensation.

This case alone illustrates one thing perfectly – you must have your AI systems under control. Tom hypothesizes that the system was probably affordable and easy to implement, but it eventually cost Air Canada dearly in terms of financial and reputational damage.

How Can Organizations Protect Themselves Against AI-Driven Cyberthreats?

With well-thought-out measures in place, organizations can reap the full benefits of AI in cybersecurity without worrying about the threats. But this doesn’t make the threats disappear. Even worse, these threats are only going to get better at outsmarting the organization’s defenses.

So, what can the organizations do about these threats?

Here’s what Tom and Venicia suggest.

Fight Fire With Fire

So, AI is potentially attacking your organization’s security systems? If so, use AI to defend them. Implement your own AI-enhanced threat detection systems.

But beware – this isn’t a one-and-done solution. Tom emphasizes the importance of staying current with the latest cybersecurity threats. More importantly – make sure your systems are up to date with them.

Also, never rely on a single control system. According to our experts, “layered security measures” are the way to go.

Never Stop Learning (and Training)

When it comes to AI in cybersecurity, continuous learning and training are of utmost importance – learning for your employees and training for the AI models. It’s the only way to ensure all system aspects function properly and your employees know how to use each and every one of them.

This approach should also alleviate one of the biggest concerns regarding an increasing AI implementation. Namely, employees fear that they will lose their jobs due to AI. But the truth is, the AI systems need them just as much as they need those systems.

As Tom puts it, “You need to train the AI system so it can protect you.”

That’s why studying to be a cybersecurity professional is a smart career move.

However, you’ll want to find a program that understands the importance of AI in cybersecurity and equips you to handle it properly. Get a master’s degree in Enterprise Security from OPIT, and that’s exactly what you’ll get.

Join the Bigger Fight

When it comes to cybersecurity, transparency is key. If organizations fail to report cybersecurity incidents promptly and accurately, they not only jeopardize their own security but also that of other organizations and individuals. Transparency builds trust and allows for collaboration in addressing cybersecurity threats collectively.

So, our experts urge you to engage in information sharing and collaborative efforts with other organizations, industry groups, and governmental bodies to stay ahead of threats.

How Has AI Impacted Data Protection and Privacy?

Among the challenges presented by AI, one stands out the most – the potential impact on data privacy and protection. Why? Because there’s a growing fear that personal data might be used to train large AI models.

That’s why European policymakers sprang into action and introduced the Artificial Intelligence Act in March 2024.

This regulation, implemented by the European Parliament, aims to protect fundamental rights, democracy, the rule of law, and environmental sustainability from high-risk AI. The act is akin to the well-known General Data Protection Regulation (GDPR) passed in 2016 but exclusively targets the use of AI. The good news for those fearful of AI’s potential negative impact is that every requirement imposed by this act is backed up with heavy penalties.

But how can organizations ensure customers, clients, and partners that their data is fully protected?

According to our experts, the answer is simple – transparency, transparency, and some more transparency!

Any employed AI system must be designed in a way that doesn’t jeopardize anyone’s privacy and freedom. However, it’s not enough to just design the system in such a way. You must also ensure all the stakeholders understand this design and the system’s operation. This includes providing clear information about the data being collected, how it’s being used, and the measures in place to protect it.

Beyond their immediate group of stakeholders, organizations also must ensure that their data isn’t manipulated or used against people. Tom gives an example of what must be avoided at all costs. Let’s say a client applies for a loan in a financial institution. Under no circumstances should that institution use AI to track the client’s personal data and use it against them, resulting in a loan ban. This hypothetical scenario is a clear violation of privacy and trust.

And according to Tom, “privacy is more important than ever.” The same goes for internal ethical standards organizations must develop.

Keeping Up With Cybersecurity

Like most revolutions, AI has come in fast and left many people (and organizations) scrambling to keep up. However, those who recognize that AI isn’t going anywhere have taken steps to embrace it and fully benefit from it. They see AI for what it truly is – a fundamental shift in how we approach technology and cybersecurity.

Those individuals have also chosen to advance their knowledge in the field by completing highly specialized and comprehensive programs like OPIT’s Enterprise Cybersecurity Master’s program. Coincidentally, this is also the program where you get to hear more valuable insights from Tom Vazdar, as he has essentially developed this course.

Read the article