How do machine learning professionals make data readable and accessible? What techniques do they use to dissect raw information?

One of these techniques is clustering. Data clustering is the process of grouping items in a data set together. These items are related, allowing key stakeholders to make critical strategic decisions using the insights.

After preparing data, which is what specialists do 50%-80% of the time, clustering takes center stage. It forms structures other members of the company can understand more easily, even if they lack advanced technical knowledge.

Clustering in machine learning involves many techniques to help accomplish this goal. Here is a detailed overview of those techniques.

Clustering Techniques

Data science is an ever-changing field with lots of variables and fluctuations. However, one thing’s for sure – whether you want to practice clustering in data mining or clustering in machine learning, you can use a wide array of tools to automate your efforts.

Partitioning Methods

The first groups of techniques are the so-called partitioning methods. There are three main sub-types of this model.

K-Means Clustering

K-means clustering is an effective yet straightforward clustering system. To execute this technique, you need to assign clusters in your data sets. From there, define your number K, which tells the program how many centroids (“coordinates” representing the center of your clusters) you need. The machine then recognizes your K and categorizes data points to nearby clusters.

You can look at K-means clustering like finding the center of a triangle. Zeroing in on the center lets you divide the triangle into several areas, allowing you to make additional calculations.

And the name K-means clustering is pretty self-explanatory. It refers to finding the median value of your clusters – centroids.

K-Medoids Clustering

K-means clustering is useful but is prone to so-called “outlier data.” This information is different from other data points and can merge with others. Data miners need a reliable way to deal with this issue.

Enter K-medoids clustering.

It’s similar to K-means clustering, but just like planes overcome gravity, so does K-medoids clustering overcome outliers. It utilizes “medoids” as the reference points – which contain maximum similarities with other data points in your cluster. As a result, no outliers interfere with relevant data points, making this one of the most dependable clustering techniques in data mining.

Fuzzy C-Means Clustering

Fuzzy C-means clustering is all about calculating the distance from the median point to individual data points. If a data point is near the cluster centroid, it’s relevant to the goal you want to accomplish with your data mining. The farther you go from this point, the farther you move the goalpost and decrease relevance.

Hierarchical Methods

Some forms of clustering in machine learning are like textbooks – similar topics are grouped in a chapter and are different from topics in other chapters. That’s precisely what hierarchical clustering aims to accomplish. You can the following methods to create data hierarchies.

Agglomerative Clustering

Agglomerative clustering is one of the simplest forms of hierarchical clustering. It divides your data set into several clusters, making sure data points are similar to other points in the same cluster. By grouping them, you can see the differences between individual clusters.

Before the execution, each data point is a full-fledged cluster. The technique helps you form more clusters, making this a bottom-up strategy.

Divisive Clustering

Divisive clustering lies on the other end of the hierarchical spectrum. Here, you start with just one cluster and create more as you move through your data set. This top-down approach produces as many clusters as necessary until you achieve the requested number of partitions.

Density-Based Methods

Birds of a feather flock together. That’s the basic premise of density-based methods. Data points that are close to each other form high-density clusters, indicating their cohesiveness. The two primary density-based methods of clustering in data mining are DBSCAN and OPTICS.

DBSCAN (Density-Based Spatial Clustering of Applications With Noise)

Related data groups are close to each other, forming high-density areas in your data sets. The DBSCAN method picks up on these areas and groups information accordingly.

OPTICS (Ordering Points to Identify the Clustering Structure)

The OPTICS technique is like DBSCAN, grouping data points according to their density. The only major difference is that OPTICS can identify varying densities in larger groups.

Grid-Based Methods

You can see grids on practically every corner. They can easily be found in your house or your car. They’re also prevalent in clustering.

STING (Statistical Information Grid)

The STING grid method divides a data point into rectangular grills. Afterward, you determine certain parameters for your cells to categorize information.

CLIQUE (Clustering in QUEst)

Agglomerative clustering isn’t the only bottom-up clustering method on our list. There’s also the CLIQUE technique. It detects clusters in your environment and combines them according to your parameters.

Model-Based Methods

Different clustering techniques have different assumptions. The assumption of model-based methods is that a model generates specific data points. Several such models are used here.

Gaussian Mixture Models (GMM)

The aim of Gaussian mixture models is to identify so-called Gaussian distributions. Each distribution is a cluster, and any information within a distribution is related.

Hidden Markov Models (HMM)

Most people use HMM to determine the probability of certain outcomes. Once they calculate the probability, they can figure out the distance between individual data points for clustering purposes.

Spectral Clustering

If you often deal with information organized in graphs, spectral clustering can be your best friend. It finds related groups of notes according to linked edges.

Comparison of Clustering Techniques

It’s hard to say that one algorithm is superior to another because each has a specific purpose. Nevertheless, some clustering techniques might be especially useful in particular contexts:

  • OPTICS beats DBSCAN when clustering data points with different densities.
  • K-means outperforms divisive clustering when you wish to reduce the distance between a data point and a cluster.
  • Spectral clustering is easier to implement than the STING and CLIQUE methods.

Cluster Analysis

You can’t put your feet up after clustering information. The next step is to analyze the groups to extract meaningful information.

Importance of Cluster Analysis in Data Mining

The importance of clustering in data mining can be compared to the importance of sunlight in tree growth. You can’t get valuable insights without analyzing your clusters. In turn, stakeholders wouldn’t be able to make critical decisions about improving their marketing efforts, target audience, and other key aspects.

Steps in Cluster Analysis

Just like the production of cars consists of many steps (e.g., assembling the engine, making the chassis, painting, etc.), cluster analysis is a multi-stage process:

Data Preprocessing

Noise and other issues plague raw information. Data preprocessing solves this issue by making data more understandable.

Feature Selection

You zero in on specific features of a cluster to identify those clusters more easily. Plus, feature selection allows you to store information in a smaller space.

Clustering Algorithm Selection

Choosing the right clustering algorithm is critical. You need to ensure your algorithm is compatible with the end result you wish to achieve. The best way to do so is to determine how you want to establish the relatedness of the information (e.g., determining median distances or densities).

Cluster Validation

In addition to making your data points easily digestible, you also need to verify whether your clustering process is legit. That’s where cluster validation comes in.

Cluster Validation Techniques

There are three main cluster validation techniques when performing clustering in machine learning:

Internal Validation

Internal validation evaluates your clustering based on internal information.

External Validation

External validation assesses a clustering process by referencing external data.

Relative Validation

You can vary your number of clusters or other parameters to evaluate your clustering. This procedure is known as relative validation.

Applications of Clustering in Data Mining

Clustering may sound a bit abstract, but it has numerous applications in data mining.

  • Customer Segmentation – This is the most obvious application of clustering. You can group customers according to different factors, like age and interests, for better targeting.
  • Anomaly Detection – Detecting anomalies or outliers is essential for many industries, such as healthcare.
  • Image Segmentation – You use data clustering if you want to recognize a certain object in an image.
  • Document Clustering – Organizing documents is effortless with document clustering.
  • Bioinformatics and Gene Expression Analysis – Grouping related genes together is relatively simple with data clustering.

Challenges and Future Directions

  • Scalability – One of the biggest challenges of data clustering is expected to be applying the process to larger datasets. Addressing this problem is essential in a world with ever-increasing amounts of information.
  • Handling High-Dimensional Data – Future systems may be able to cluster data with thousands of dimensions.
  • Dealing with Noise and Outliers – Specialists hope to enhance the ability of their clustering systems to reduce noise and lessen the influence of outliers.
  • Dynamic Data and Evolving Clusters – Updates can change entire clusters. Professionals will need to adapt to this environment to retain efficiency.

Elevate Your Data Mining Knowledge

There are a vast number of techniques for clustering in machine learning. From centroid-based solutions to density-focused approaches, you can take many directions when grouping data.

Mastering them is essential for any data miner, as they provide insights into crucial information. On top of that, the data science industry is expected to hit nearly $26 billion by 2026, which is why clustering will become even more prevalent.

Related posts

Value of the Capstone Project: OPIT Student Interview With Irene
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 12, 2025 6 min read

During the Open Institute of Technology’s (OPIT) 2025 graduation day, the OPIT team interviewed graduating student Irene about her experience with the MSc in Applied Data Science and AI. The interview focused on how Irene juggled working full-time with her study commitments and the value of the final Capstone project, which is part of all OPIT’s master’s programs.

Irene, a senior developer at ReActive, said she chose to study at OPIT to update her skills for the current and future job market.

OPIT’s MSc in Applied Data Science and AI

In her interview, Irene said she appreciated how OPIT’s course did not focus purely on the hard mathematics behind technologies such as AI and cloud computing, but also on how these technologies can be applied to real business challenges.

She said she appreciated how the course gave her the skills to explain to stakeholders with limited technical knowledge how technology can be leveraged to solve business problems, but it also equipped her to engage with technical teams using their language and jargon. These skills help graduates bridge the gap between management and technology to drive innovation and transformation.

Irene chose to continue working full-time while studying and appreciated how her course advisor helped her plan her study workload around her work commitments “down to the minute” so that she never missed a deadline or was overcome by excessive stress.

She said she would recommend the program to people at any stage in their career who want to adapt to the current job market. She also praised the international nature of the program, in terms of both the faculty and the cohort, as working beyond borders promises to be another major business trend in the coming years.

Capstone Project

Irene described the most fulfilling part of the program as the final Capstone project, which allowed her to apply what she had learned to a real-life challenge.

The Capstone Project and Dissertation, also called the MSc Thesis, is a significant project aimed at consolidating skills acquired during the program through a long-term research project.

Students, with the help of an OPIT supervisor, develop and realize a project proposal as part of the final term of their master’s journey, investigating methodological and practical aspects in program domains. Internships with industrial partners to deliver the project are encouraged and facilitated by OPIT’s staff.

The Capstone project allows students to demonstrate their mastery of their field and the skills they’ve learned when talking to employers as part of the hiring process.

Capstone Project: AI Meets Art

Irene’s Capstone project, “Call Me VasarAI: An AI-Powered Framework for Artwork Recognition and Storytelling,” focused on using AI to bridge the gap between art and artificial intelligence over time, enhancing meaning through contextualization. She developed an AI-powered platform that allows users to upload a work of art and discover the style (e.g. Expressionism), the name of the artist, and a description of the artwork within an art historical context.

Irene commented on how her supervisor helped her fine-tune her ideas into a stronger project and offered continuous guidance throughout the process with weekly progress updates. After defending her thesis in January, she noted how the examiners did not just assess her work but guided her on what could be next.

Other Example Capstone Projects

Irene’s success is just one example of a completed OPIT Capstone project. Below are further examples of both successful projects and projects currently underway.

Elina delivered her Capstone project on predictive modeling of natural disasters using data science and machine learning techniques to analyze global trends in natural disasters and their relationships with climate change-related and socio-economic factors.

According to Elina: “This hands-on experience has reinforced my theoretical and practical abilities in data science and AI. I appreciate the versatility of these skills, which are valuable across many domains. This project has been challenging yet rewarding, showcasing the real-world impact of my academic learning and the interdisciplinary nature of data science and AI.”

For his Capstone project, Musa worked on finding the optimal pipeline to fine-tune a language learning model (LLM) based on the specific language and model, considering EU laws on technological topics such as GDPR, DSA, DME, and the AI Act, which are translated into several languages.

Musa stated: “This Capstone project topic aligns perfectly with my initial interests when applying to OPIT. I am deeply committed to developing a pipeline in the field of EU law, an area that has not been extensively explored yet.”

Tamas worked with industry partner Solergy on his Capstone project, working with generative AI to supercharge lead generation, boost SEO performance, and deliver data-driven marketing insights in the realm of renewable energy.

OPIT’s Master’s Courses

All of OPIT’s master’s courses include a final Capstone project to be completed over one 13-week term in the 90 ECTS program and over two terms in the 120 ECTS program.

The MSc in Digital Business and Innovation is designed for professionals who want to drive digital innovation in both established companies and new digital-native contexts. It covers digital business foundations and the applications of new technologies in business contexts. It emphasizes the use of AI to drive innovation and covers digital entrepreneurship, digital product management, and growth hacking.

The MSc in Responsible Artificial Intelligence combines technical expertise with a focus on the ethical implications of modern AI. It focuses on real-world applications in areas like natural language processing and industry automation, with a focus on sustainable AI systems and environmental impact.

The MSc in Enterprise Cybersecurity prepares students to fulfill the market need for versatile cybersecurity solutions, emphasizing hands-on experience and soft-skills development.

The MSc in Applied Data Science and AI focuses on the intersection between management and technology. It covers the underlying fundamentals, methodologies and tools needed to solve real-life business problems that can be approached using data science and AI.

Read the article
OPIT Career Services: How We Support Your Future
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 12, 2025 6 min read

In May 2025, Greta Maiocchi, Head of Marketing and Administration at the Open Institute of Technology (OPIT), went online with Stefania Tabi, OPIT Career Services Counselor, to discuss how OPIT helps students translate their studies into a career.

You can access OPIT Career Services throughout your course of study to help with making the transition from student to professional. Stefania specifically discussed what companies and businesses are looking for and how OPIT Career Services can help you stand out and find a desirable career with your degree.

What Companies Want

OPIT degrees are tailored to a wide range of individuals, with bachelor’s degrees for those looking to establish a career and master’s degrees for experienced professionals hoping to elevate their skills to meet the current market demand.

OPIT’s degrees establish the foundation of the key technological skills that are set to reshape industries shortly, in particular artificial intelligence (AI), big data, cloud computing, and cybersecurity.

Stefania shared how companies recruiting tech talent are looking for three types of skills:

  • Builders – These are the superstars of the industry today, capable of developing the technologies that will transform the industry. These roles include AI engineers, cloud architects, and web developers.
  • Protectors – Cybercrime is expected to cost the world $10.5 trillion by the end of 2025, which means companies place a high value on cybersecurity professionals capable of protecting their investment, data, and intellectual property (IP).
  • Decoders – Industry is producing more data than ever before, with global data storage projected to exceed 200 zettabytes this year. Businesses seek professionals who can extract value from that data, such as data scientists and data strategists.

Growing Demand

Stefania also shared statistics about the growing demand for these roles. According to the World Economic Forum, there will be a 30-35% greater demand for roles such as data analysts and scientists, big data specialists, business intelligence analysts, data engineers, and database and network professionals by 2027.

The U.S. Bureau of Labor Statistics, meanwhile, predicts that by 2032, the demand for information security will increase by 33.8%, by 21.5% for software developers, by 10.4% for computer network architects, and by 9.9% for computer system analysts. Finally, the McKinsey Global Institute predicts a similar 15-25% increase in demand for technology professionals in the business services sector.

How Career Support Makes a Difference

Next, Stefania explained that while learning essential skills is vital to accessing this growing job market, high demand does not guarantee entry. Today, professionals looking for jobs in the technology field must stand out from the hundreds of applicants for each position with high-level skills.

Applicants demonstrate technical expertise in relevant fields by completing OPIT’s courses. They also need to prove that they can deliver results, demonstrating not just what they know but how they have applied what they know to transform or benefit a business. Professionals also need adaptability, adaptive problem-solving skills, and a commitment to continuous learning. OPIT’s final Capstone projects can be an excellent way to demonstrate the value of newly acquired skills.

Each OPIT program prepares students for future careers by providing dedicated support and academic guidance at every step.

What Kind of Support Does Career Services Offer?

Career Services is specifically focused on assisting students in making the transition to the job market, and you can make an appointment with them at any time during your studies. Stefania gave some specific examples of how Career Services can support students on their journey into the career market.

Stefania said she begins by talking with students and discussing what they truly value to help them discover the type of career that aligns with their strengths. With students who are still undecided on how to start to build their careers, she helps them craft a tailored job and internship search plan.

Stefania has also worked with students who want to stand out during the job application process among the hundreds of applicants. This includes hands-on help in reframing resumes, tailoring LinkedIn profiles, and developing cover letters that tell a unique story.

Finally, Stefania has assisted students in preparing for interviews, helping them research the company, develop intelligent questions about the role to ask the interviewer and engage in mock interviews with an experienced recruiter.

Connecting With Employers

OPIT Career Services also offers students exposure to a wide range of employers and the opportunity to build relationships through masterclasses, career talks, and industry roundtables. The office also helps students build career-ready skills through interactive, hands-on workshops and hosts virtual career fairs with top recruiters.

Career Services also plays an integral role in connecting students with companies for their Capstone project in the final phase of their master’s program. So far, students have worked with companies including Sintica, Cosmica, Cisco, PayPal, Morgan Stanley, AWS, Dylog, and Accenture. Projects have included developing predictive modeling for natural disasters and fine-tuning AI to answer questions about EU tech laws in multiple languages.

What Kinds of Jobs Have OPIT Graduates Secured?

Stefania capped off her talk by sharing some of the positions that OPIT graduates have now fulfilled, including:

  • Chief Information Security Officer at MOMO for MTN mobile services in Nigeria
  • Data Analyst at ISX Financial in Cyprus
  • Head of Sustainability Office at Banca Popolare di Sondrio in Italy
  • Data Analyst at Numisma Group in Cyprus
  • Senior Software Engineer at Neaform in Italy

OPIT Courses

OPIT offers both foundational bachelor’s degrees and advanced master’s courses, which are both accessible with any bachelor’s degree (it does not have to be in the field of computer science).

Choose between a BSc in Modern Computer Science for a strong technical base or a BSc in Digital Business to focus on applications.

Meanwhile, courses that involve a final Capstone project include an MSc in Applied Data Science and AI, Digital Business and Innovation, Enterprise Cybersecurity, and Responsible Artificial Intelligence.

Read the article