How do machine learning professionals make data readable and accessible? What techniques do they use to dissect raw information?

One of these techniques is clustering. Data clustering is the process of grouping items in a data set together. These items are related, allowing key stakeholders to make critical strategic decisions using the insights.

After preparing data, which is what specialists do 50%-80% of the time, clustering takes center stage. It forms structures other members of the company can understand more easily, even if they lack advanced technical knowledge.

Clustering in machine learning involves many techniques to help accomplish this goal. Here is a detailed overview of those techniques.

Clustering Techniques

Data science is an ever-changing field with lots of variables and fluctuations. However, one thing’s for sure – whether you want to practice clustering in data mining or clustering in machine learning, you can use a wide array of tools to automate your efforts.

Partitioning Methods

The first groups of techniques are the so-called partitioning methods. There are three main sub-types of this model.

K-Means Clustering

K-means clustering is an effective yet straightforward clustering system. To execute this technique, you need to assign clusters in your data sets. From there, define your number K, which tells the program how many centroids (“coordinates” representing the center of your clusters) you need. The machine then recognizes your K and categorizes data points to nearby clusters.

You can look at K-means clustering like finding the center of a triangle. Zeroing in on the center lets you divide the triangle into several areas, allowing you to make additional calculations.

And the name K-means clustering is pretty self-explanatory. It refers to finding the median value of your clusters – centroids.

K-Medoids Clustering

K-means clustering is useful but is prone to so-called “outlier data.” This information is different from other data points and can merge with others. Data miners need a reliable way to deal with this issue.

Enter K-medoids clustering.

It’s similar to K-means clustering, but just like planes overcome gravity, so does K-medoids clustering overcome outliers. It utilizes “medoids” as the reference points – which contain maximum similarities with other data points in your cluster. As a result, no outliers interfere with relevant data points, making this one of the most dependable clustering techniques in data mining.

Fuzzy C-Means Clustering

Fuzzy C-means clustering is all about calculating the distance from the median point to individual data points. If a data point is near the cluster centroid, it’s relevant to the goal you want to accomplish with your data mining. The farther you go from this point, the farther you move the goalpost and decrease relevance.

Hierarchical Methods

Some forms of clustering in machine learning are like textbooks – similar topics are grouped in a chapter and are different from topics in other chapters. That’s precisely what hierarchical clustering aims to accomplish. You can the following methods to create data hierarchies.

Agglomerative Clustering

Agglomerative clustering is one of the simplest forms of hierarchical clustering. It divides your data set into several clusters, making sure data points are similar to other points in the same cluster. By grouping them, you can see the differences between individual clusters.

Before the execution, each data point is a full-fledged cluster. The technique helps you form more clusters, making this a bottom-up strategy.

Divisive Clustering

Divisive clustering lies on the other end of the hierarchical spectrum. Here, you start with just one cluster and create more as you move through your data set. This top-down approach produces as many clusters as necessary until you achieve the requested number of partitions.

Density-Based Methods

Birds of a feather flock together. That’s the basic premise of density-based methods. Data points that are close to each other form high-density clusters, indicating their cohesiveness. The two primary density-based methods of clustering in data mining are DBSCAN and OPTICS.

DBSCAN (Density-Based Spatial Clustering of Applications With Noise)

Related data groups are close to each other, forming high-density areas in your data sets. The DBSCAN method picks up on these areas and groups information accordingly.

OPTICS (Ordering Points to Identify the Clustering Structure)

The OPTICS technique is like DBSCAN, grouping data points according to their density. The only major difference is that OPTICS can identify varying densities in larger groups.

Grid-Based Methods

You can see grids on practically every corner. They can easily be found in your house or your car. They’re also prevalent in clustering.

STING (Statistical Information Grid)

The STING grid method divides a data point into rectangular grills. Afterward, you determine certain parameters for your cells to categorize information.

CLIQUE (Clustering in QUEst)

Agglomerative clustering isn’t the only bottom-up clustering method on our list. There’s also the CLIQUE technique. It detects clusters in your environment and combines them according to your parameters.

Model-Based Methods

Different clustering techniques have different assumptions. The assumption of model-based methods is that a model generates specific data points. Several such models are used here.

Gaussian Mixture Models (GMM)

The aim of Gaussian mixture models is to identify so-called Gaussian distributions. Each distribution is a cluster, and any information within a distribution is related.

Hidden Markov Models (HMM)

Most people use HMM to determine the probability of certain outcomes. Once they calculate the probability, they can figure out the distance between individual data points for clustering purposes.

Spectral Clustering

If you often deal with information organized in graphs, spectral clustering can be your best friend. It finds related groups of notes according to linked edges.

Comparison of Clustering Techniques

It’s hard to say that one algorithm is superior to another because each has a specific purpose. Nevertheless, some clustering techniques might be especially useful in particular contexts:

  • OPTICS beats DBSCAN when clustering data points with different densities.
  • K-means outperforms divisive clustering when you wish to reduce the distance between a data point and a cluster.
  • Spectral clustering is easier to implement than the STING and CLIQUE methods.

Cluster Analysis

You can’t put your feet up after clustering information. The next step is to analyze the groups to extract meaningful information.

Importance of Cluster Analysis in Data Mining

The importance of clustering in data mining can be compared to the importance of sunlight in tree growth. You can’t get valuable insights without analyzing your clusters. In turn, stakeholders wouldn’t be able to make critical decisions about improving their marketing efforts, target audience, and other key aspects.

Steps in Cluster Analysis

Just like the production of cars consists of many steps (e.g., assembling the engine, making the chassis, painting, etc.), cluster analysis is a multi-stage process:

Data Preprocessing

Noise and other issues plague raw information. Data preprocessing solves this issue by making data more understandable.

Feature Selection

You zero in on specific features of a cluster to identify those clusters more easily. Plus, feature selection allows you to store information in a smaller space.

Clustering Algorithm Selection

Choosing the right clustering algorithm is critical. You need to ensure your algorithm is compatible with the end result you wish to achieve. The best way to do so is to determine how you want to establish the relatedness of the information (e.g., determining median distances or densities).

Cluster Validation

In addition to making your data points easily digestible, you also need to verify whether your clustering process is legit. That’s where cluster validation comes in.

Cluster Validation Techniques

There are three main cluster validation techniques when performing clustering in machine learning:

Internal Validation

Internal validation evaluates your clustering based on internal information.

External Validation

External validation assesses a clustering process by referencing external data.

Relative Validation

You can vary your number of clusters or other parameters to evaluate your clustering. This procedure is known as relative validation.

Applications of Clustering in Data Mining

Clustering may sound a bit abstract, but it has numerous applications in data mining.

  • Customer Segmentation – This is the most obvious application of clustering. You can group customers according to different factors, like age and interests, for better targeting.
  • Anomaly Detection – Detecting anomalies or outliers is essential for many industries, such as healthcare.
  • Image Segmentation – You use data clustering if you want to recognize a certain object in an image.
  • Document Clustering – Organizing documents is effortless with document clustering.
  • Bioinformatics and Gene Expression Analysis – Grouping related genes together is relatively simple with data clustering.

Challenges and Future Directions

  • Scalability – One of the biggest challenges of data clustering is expected to be applying the process to larger datasets. Addressing this problem is essential in a world with ever-increasing amounts of information.
  • Handling High-Dimensional Data – Future systems may be able to cluster data with thousands of dimensions.
  • Dealing with Noise and Outliers – Specialists hope to enhance the ability of their clustering systems to reduce noise and lessen the influence of outliers.
  • Dynamic Data and Evolving Clusters – Updates can change entire clusters. Professionals will need to adapt to this environment to retain efficiency.

Elevate Your Data Mining Knowledge

There are a vast number of techniques for clustering in machine learning. From centroid-based solutions to density-focused approaches, you can take many directions when grouping data.

Mastering them is essential for any data miner, as they provide insights into crucial information. On top of that, the data science industry is expected to hit nearly $26 billion by 2026, which is why clustering will become even more prevalent.

Related posts

Master the AI Era: Key Skills for Success
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 24, 2025 6 min read

The world is rapidly changing. New technologies such as artificial intelligence (AI) are transforming our lives and work, redefining the definition of “essential office skills.”

So what essential skills do today’s workers need to thrive in a business world undergoing a major digital transformation? It’s a question that Alan Lerner, director at Toptal and lecturer at the Open Institute of Technology (OPIT), addressed in his recent online masterclass.

In a broad overview of the new office landscape, Lerner shares the essential skills leaders need to manage – including artificial intelligence – to keep abreast of trends.

Here are eight essential capabilities business leaders in the AI era need, according to Lerner, which he also detailed in OPIT’s recent Master’s in Digital Business and Innovation webinar.

An Adapting Professional Environment

Lerner started his discussion by quoting naturalist Charles Darwin.

“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change.”

The quote serves to highlight the level of change that we are currently seeing in the professional world, said Lerner.

According to the World Economic Forum’s The Future of Jobs Report 2025, over the next five years 22% of the labor market will be affected by structural change – including job creation and destruction – and much of that change will be enabled by new technologies such as AI and robotics. They expect the displacement of 92 million existing jobs and the creation of 170 million new jobs by 2030.

While there will be significant growth in frontline jobs – such as delivery drivers, construction workers, and care workers – the fastest-growing jobs will be tech-related roles, including big data specialists, FinTech engineers, and AI and machine learning specialists, while the greatest decline will be in clerical and secretarial roles. The report also predicts that most workers can anticipate that 39% of their existing skill set will be transformed or outdated in five years.

Lerner also highlighted key findings in the Accenture Life Trends 2025 Report, which explores behaviors and attitudes related to business, technology, and social shifts. The report noted five key trends:

  • Cost of Hesitation – People are becoming more wary of the information they receive online.
  • The Parent Trap – Parents and governments are increasingly concerned with helping the younger generation shape a safe relationship with digital technology.
  • Impatience Economy – People are looking for quick solutions over traditional methods to achieve their health and financial goals.
  • The Dignity of Work – Employees desire to feel inspired, to be entrusted with agency, and to achieve a work-life balance.
  • Social Rewilding – People seek to disconnect and focus on satisfying activities and meaningful interactions.

These are consumer and employee demands representing opportunities for change in the modern business landscape.

Key Capabilities for the AI Era

Businesses are using a variety of strategies to adapt, though not always strategically. According to McClean & Company’s HR Trends Report 2025, 42% of respondents said they are currently implementing AI solutions, but only 7% have a documented AI implementation strategy.

This approach reflects the newness of the technology, with many still unsure of the best way to leverage AI, but also feeling the pressure to adopt and adapt, experiment, and fail forward.

So, what skills do leaders need to lead in an environment with both transformation and uncertainty? Lerner highlighted eight essential capabilities, independent of technology.

Capability 1: Manage Complexity

Leaders need to be able to solve problems and make decisions under fast-changing conditions. This requires:

  • Being able to look at and understand organizations as complex social-technical systems
  • Keeping a continuous eye on change and adopting an “outside-in” vision of their organization
  • Moving fast and fixing things faster
  • Embracing digital literacy and technological capabilities

Capability 2: Leverage Networks

Leaders need to develop networks systematically to achieve organizational goals because it is no longer possible to work within silos. Leaders should:

  • Use networks to gain insights into complex problems
  • Create networks to enhance influence
  • Treat networks as mutually rewarding relationships
  • Develop a robust profile that can be adapted for different networks

Capability 3: Think and Act “Global”

Leaders should benchmark using global best practices but adapt them to local challenges and the needs of their organization. This requires:

  • Identifying what great companies are achieving and seeking data to understand underlying patterns
  • Developing perspectives to craft global strategies that incorporate regional and local tactics
  • Learning how to navigate culturally complex and nuanced business solutions

Capability 4: Inspire Engagement

Leaders must foster a culture that creates meaningful connections between employees and organizational values. This means:

  • Understanding individual values and needs
  • Shaping projects and assignments to meet different values and needs
  • Fostering an inclusive work environment with plenty of psychological safety
  • Developing meaningful conversations and both providing and receiving feedback
  • Sharing advice and asking for help when needed

Capability 5: Communicate Strategically

Leaders should develop crisp, clear messaging adaptable to various audiences and focus on active listening. Achieving this involves:

  • Creating their communication style and finding their unique voice
  • Developing storytelling skills
  • Utilizing a data-centric and fact-based approach to communication
  • Continual practice and asking for feedback

Capability 6: Foster Innovation

Leaders should collaborate with experts to build a reliable innovation process and a creative environment where new ideas thrive. Essential steps include:

  • Developing or enhancing structures that best support innovation
  • Documenting and refreshing innovation systems, processes, and practices
  • Encouraging people to discover new ways of working
  • Aiming to think outside the box and develop a growth mindset
  • Trying to be as “tech-savvy” as possible

Capability 7: Cultivate Learning Agility

Leaders should always seek out and learn new things and not be afraid to ask questions. This involves:

  • Adopting a lifelong learning mindset
  • Seeking opportunities to discover new approaches and skills
  • Enhancing problem-solving skills
  • Reviewing both successful and unsuccessful case studies

Capability 8: Develop Personal Adaptability

Leaders should be focused on being effective when facing uncertainty and adapting to change with vigor. Therefore, leaders should:

  • Be flexible about their approach to facing challenging situations
  • Build resilience by effectively managing stress, time, and energy
  • Recognize when past approaches do not work in current situations
  • Learn from and capitalize on mistakes

Curiosity and Adaptability

With the eight key capabilities in mind, Lerner suggests that curiosity and adaptability are the key skills that everyone needs to thrive in the current environment.

He also advocates for lifelong learning and teaches several key courses at OPIT which can lead to a Bachelor’s Degree in Digital Business.

Read the article
Lessons From History: How Fraud Tactics From the 18th Century Still Impact Us Today
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2025 6 min read

Many people treat cyber threats and digital fraud as a new phenomenon that only appeared with the development of the internet. But fraud – intentional deceit to manipulate a victim – has always existed; it is just the tools that have changed.

In a recent online course for the Open Institute of Technology (OPIT), AI & Cybersecurity Strategist Tom Vazdar, chair of OPIT’s Master’s Degree in Enterprise Cybersecurity, demonstrated the striking parallels between some of the famous fraud cases of the 18th century and modern cyber fraud.

Why does the history of fraud matter?

Primarily because the psychology and fraud tactics have remained consistent over the centuries. While cybersecurity is a tool that can combat modern digital fraud threats, no defense strategy will be successful without addressing the underlying psychology and tactics.

These historical fraud cases Vazdar addresses offer valuable lessons for current and future cybersecurity approaches.

The South Sea Bubble (1720)

The South Sea Bubble was one of the first stock market crashes in history. While it may not have had the same far-reaching consequences as the Black Thursday crash of 1929 or the 2008 crash, it shows how fraud can lead to stock market bubbles and advantages for insider traders.

The South Sea Company was a British company that emerged to monopolize trade with the Spanish colonies in South America. The company promised investors significant returns but provided no evidence of its activities. This saw the stock prices grow from £100 to £1,000 in a matter of months, then crash when the company’s weakness was revealed.

Many people lost a significant amount of money, including Sir Isaac Newton, prompting the statement, “I can calculate the movement of the stars, but not the madness of men.

Investors often have no way to verify a company’s claim, making stock markets a fertile ground for manipulation and fraud since their inception. When one party has more information than another, it creates the opportunity for fraud. This can be seen today in Ponzi schemes, tech stock bubbles driven by manipulative media coverage, and initial cryptocurrency offerings.

The Diamond Necklace Affair (1784-1785)

The Diamond Necklace Affair is an infamous incident of fraud linked to the French Revolution. An early example of identity theft, it also demonstrates that the harm caused by such a crime can go far beyond financial.

A French aristocrat named Jeanne de la Mont convinced Cardinal Louis-René-Édouard, Prince de Rohan into thinking that he was buying a valuable diamond necklace on behalf of Queen Marie Antoinette. De la Mont forged letters from the queen and even had someone impersonate her for a meeting, all while convincing the cardinal of the need for secrecy. The cardinal overlooked several questionable issues because he believed he would gain political benefit from the transaction.

When the scheme finally exposed, it damaged Marie Antoinette’s reputation, despite her lack of involvement in the deception. The story reinforced the public perception of her as a frivolous aristocrat living off the labor of the people. This contributed to the overall resentment of the aristocracy that erupted in the French Revolution and likely played a role in Marie Antoinette’s death. Had she not been seen as frivolous, she might have been allowed to live after her husband’s death.

Today, impersonation scams work in similar ways. For example, a fraudster might forge communication from a CEO to convince employees to release funds or take some other action. The risk of this is only increasing with improved technology such as deepfakes.

Spanish Prisoner Scam (Late 1700s)

The Spanish Prisoner Scam will probably sound very familiar to anyone who received a “Nigerian prince” email in the early 2000s.

Victims received letters from a “wealthy Spanish prisoner” who needed their help to access his fortune. If they sent money to facilitate his escape and travel, he would reward them with greater riches when he regained his fortune. This was only one of many similar scams in the 1700s, often involving follow-up requests for additional payments before the scammer disappeared.

While the “Nigerian prince” scam received enough publicity that it became almost unbelievable that people could fall for it, if done well, these can be psychologically sophisticated scams. The stories play on people’s emotions, get them invested in the person, and enamor them with the idea of being someone helpful and important. A compelling narrative can diminish someone’s critical thinking and cause them to ignore red flags.

Today, these scams are more likely to take the form of inheritance fraud or a lottery scam, where, again, a person has to pay an advance fee to unlock a much bigger reward, playing on the common desire for easy money.

Evolution of Fraud

These examples make it clear that fraud is nothing new and that effective tactics have thrived over the centuries. Technology simply opens up new opportunities for fraud.

While 18th-century scammers had to rely on face-to-face contact and fraudulent letters, in the 19th century they could leverage the telegraph for “urgent” communication and newspaper ads to reach broader audiences. In the 20th century, there were telephones and television ads. Today, there are email, social media, and deepfakes, with new technologies emerging daily.

Rather than quack doctors offering miracle cures, we see online health scams selling diet pills and antiaging products. Rather than impersonating real people, we see fake social media accounts and catfishing. Fraudulent sites convince people to enter their bank details rather than asking them to send money. The anonymity of the digital world protects perpetrators.

But despite the technology changing, the underlying psychology that makes scams successful remains the same:

  • Greed and the desire for easy money
  • Fear of missing out and the belief that a response is urgent
  • Social pressure to “keep up with the Joneses” and the “Bandwagon Effect”
  • Trust in authority without verification

Therefore, the best protection against scams remains the same: critical thinking and skepticism, not technology.

Responding to Fraud

In conclusion, Vazdar shared a series of steps that people should take to protect themselves against fraud:

  • Think before you click.
  • Beware of secrecy and urgency.
  • Verify identities.
  • If it seems too good to be true, be skeptical.
  • Use available security tools.

Those security tools have changed over time and will continue to change, but the underlying steps for identifying and preventing fraud remain the same.

For more insights from Vazdar and other experts in the field, consider enrolling in highly specialized and comprehensive programs like OPIT’s Enterprise Security Master’s program.

Read the article