According to Data USA, degrees in the business field are among the most popular in the United States, with 840,116 degrees in this field alone being awarded in 2020. You went down the commerce route (meaning you have a grasp of business administration, accounting, and applied economics) and now you’re interested in practical applications of your knowledge.


With your commerce degree firmly under your belt, you may feel like a ship without a rudder – aimless and having no idea what direction to go. Happily, the tech field is ready and waiting for you, as a career in computer sciences may await. Here, we ask, “can a commerce student do BSc Computer Science?” The answer may surprise you, especially if you’re worried that a computer science degree’s eligibility requirements are outside the scope of what you learned in your commerce studies.


Background on Commerce and Computer Science


On the surface, commerce and computer science may seem like they go together as well as peanut butter and granite. But if you dig a little deeper into the scope of each subject, you start to realize that there’s more crossover than there first appears:

  • Commerce – A degree in commerce gives you a firm grasp of the numbers that lie behind the scenes in a business, with banking, economics, and accounting all falling under your developing areas of expertise. Analytics is also a key part of these courses (especially in the research and data analyst fields), which is where we see some crossover with computer science.
  • Computer Science – If commerce is all about the behind-the-scenes numbers in business, computer science handles what goes on under the hood in computing. Software development, data modeling, and analysis all fall under the computer science graduate’s remit, with the ability to pore through data to come to conclusions being essential to this technical subject.

It’s in the analysis that we start to see similarities between commerce and computer science emerge. Yes, commerce focuses more on the numbers behind businesses (and wider economic trends), but the ability to understand the data presented and report on what you see has applications in the computer science field. There’s not a direct crossover, as computer science will require you to learn the “language” in which computers speak, but they are many soft skills you develop in a commerce degree that apply to computer science.


Eligibility for BSc Computer Science


The key questions to ask when considering the issue of whether can commerce student do BSc Computer Science split into two categories:

  • The general eligibility requirements to study a BSc in computer science
  • Specific requirements that apply to commerce students

Eligibility Criteria for BSc Computer Science


BSc Computer Science degrees don’t require a great deal of computer know-how (though it helps), instead focusing on your grasp of mathematics. Requirements include the following:

  • A high school diploma (or your country’s equivalent) that shows solid performance in mathematical subjects.
    • Some degrees require you to achieve a specific Grade Point Average (GPA), though the specific GPA varies depending on where you apply.
  • A high level of English proficiency, which can be measured using one (or both) of the following tests:
    • IELTS – Get a minimum score between 6.0 and 7.0
    • TOEFL – Get a minimum score between 90 and 100

Beyond these educational requirements, international students may need to submit copies of their passport and Visa, alongside certified academic transcripts to show they’ve achieved their country’s equivalents of the above grades. Not all courses require this of international students, with some online universities focusing more on your academic skills and less on your country of origin.


In terms of entrance exams, some colleges enforce computer science-specific exams (such as the CUET or CUCET), while others use NPATS or similar, more general exams, to determine proficiency.


Eligibility Criteria for Commerce Students


You may be standing at the starting line of your educational journey, meaning you’ve not yet applied to start your degree in commerce. First, congratulations on thinking so far ahead that you’re wondering “Can a commerce student do BSc Computer Science?” And second, you need to know what high school subjects help you get onto this degree path.


Commerce is a form of business degree, meaning any high school subjects that apply to the economic world help. Subjects like math, finance, economics, and foreign languages are obvious choices. The likes of marketing and computer applications also help (with the latter also laying some groundwork for your later computer science studies.


Much like computer science, you’ll likely have to take an entrance exam when applying to study commerce at most universities. The CSEET, CUET, and SET are common choices, with the first of these exams focusing specifically on those who study commerce to work as company secretaries.


The Possibility of Flexible Eligibility Criteria


Not all colleges require you to take entrance exams, with some even using broader strokes for their eligibility requirements to the point where they provide flexibility for both commerce and computer science students.


Colleges with open curriculums (such as Brown University and Hamilton College) offer more freedom in terms of what you study, with their entry requirements being more flexible as a result. Online institutions, such as the Open Institute of Technology (OPIT) may also offer more flexible entry criteria, sometimes allowing you to transfer credit from one course to another. That type of credit transfer may be ideal for you if you start a degree in commerce only to later decide to go down the computer science route.



Career Prospects for Commerce Students in Computer Science


When it comes to careers for those who hold computer science degrees, the obvious heavy-hitters are software and web development, IT management, and systems architecture. There are also exciting careers in the emerging AI fields that take full advantage of the technical skills you’ll develop as part of a BSc in computer science.


As for the career crossover between commerce and computer science, the key is to think about the skills that a commerce degree gives you that can apply in the computing field. Such skills include the following:

  • Analytical Skills – Much like computer science, commerce is all about analyzing the data presented so you can report (and leverage) it for other purposes. Your ability to sit down and pore through the numbers will take you a long way in a computer-related role.
  • Problem-Solving Skills – Closely linked to analytical skills, the ability to solve problems requires you to see the data at hand and come up with solutions while accounting for any restrictions presented. In creating commerce models, those restrictions may relate to budget and competencies, while computer science asks you to solve problems while taking system capabilities and limitations into account.
  • Communication and Teamwork – Though often considered soft skills (as opposed to the “hard” technical skills you learn in a commerce degree), communication and teamwork are vital. If you need proof, try to work alone in any technical career and you’ll see why it’s so crucial to have these skills.

Potential Career Paths for Commerce Students with a BSc in Computer Science


With so much crossover potential between commerce and computer science, it’s clear that the answer to the question can a commerce student do BSc Computer Science is a resounding “yes.” And once you’ve completed your studies, several career paths await:

  • Data Analyst – Reviewing data to find insights (be that into businesses or computer systems) are part of the remit for a data analyst. This role is all about problem-solving, which is a skill you’ll develop in abundance as a commerce and computer science student.
  • Business Analyst – Take the ability to gather insights that is required of a data analyst and apply it specifically to areas of improvement in a business to become a business analyst. You’ll combine technical knowledge of a company’s inner workings with complex financial (and computational) models.
  • IT Consultant – More computer science-centric than commerce-focused, IT consultants deal with the hows and whys of the computer networks businesses build. Your commerce skills will still come into play though, particularly when explaining how IT benefits businesses financially.
  • Financial Technology Specialist – Combining the best of both worlds, this role combines the accounting skills you develop studying commerce with the technical ability needed to understand software and its functions.

 

Challenges and Considerations for Commerce Students


Though it’s possible for a commerce student to study (and succeed in) computer science, there are some challenges to consider.


The Technical Nature of Computer Science


As you learn the language of numbers in a commerce degree, so must you learn the language of machines when studying computer science. Getting to grips with the lingo (not to mention coding) can present a challenge to more business-minded students.


Balancing Your Workload


There’s an old saying that goes “Don’t burn the candle at both ends,” which is a warning not to pack too much onto your work plate. If you study commerce and computer science simultaneously, there’s a risk you may push yourself too far. Avoiding burnout requires finding the balance between your studies and personal time.


Networking and Practical Experience


As a commerce student, you understand that the world of business is as much about who you know as what you know. Finding the right people to take a chance on you, thus giving you practical experience, can be tough. But when armed with a pair of degrees in subjects that complement one another, you’re in a better position to build connections with people who can help you go far.



From Commerce to Computing – Is It Right for You?


So, can a commerce student do BSc Computer Science?


The answer isn’t just “yes,” but that it’s actually a great direction to go. Where a commerce degree equips you with a nice mix of technical knowledge and soft skills, a computer science course gives you even more practical knowledge that allows you to enter more specialized fields. However, your interest in each subject plays a role, as your ability (and passion) for studying hinges on your desire to dig into the more technical world of computing.


Assuming you have a genuine interest (and meet the appropriate eligibility criteria), supplementing your commerce studies with computer science can open up many career paths.

Related posts

Agenda Digitale: The Five Pillars of the Cloud According to NIST – A Compass for Businesses and Public Administrations
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 26, 2025 7 min read

Source:


By Lokesh Vij, Professor of Cloud Computing Infrastructure, Cloud Development, Cloud Computing Automation and Ops and Cloud Data Stacks at OPIT – Open Institute of Technology

NIST identifies five key characteristics of cloud computing: on-demand self-service, network access, resource pooling, elasticity, and metered service. These pillars explain the success of the global cloud market of 912 billion in 2025

In less than twenty years, the cloud has gone from a curiosity to an indispensable infrastructure. According to Precedence Research, the global market will reach 912 billion dollars in 2025 and will exceed 5.1 trillion in 2034. In Europe, the expected spending for 2025 will be almost 202 billion dollars. At the base of this success are five characteristics, identified by the NIST (National Institute of Standards and Technology): on-demand self-service, network access, shared resource pool, elasticity and measured service.

Understanding them means understanding why the cloud is the engine of digital transformation.

On-demand self-service: instant provisioning

The journey through the five pillars starts with the ability to put IT in the hands of users.

Without instant provisioning, the other benefits of the cloud remain potential. Users can turn resources on and off with a click or via API, without tickets or waiting. Provisioning a VM, database, or Kubernetes cluster takes seconds, not weeks, reducing time to market and encouraging continuous experimentation. A DevOps team that releases microservices multiple times a day or a fintech that tests dozens of credit-scoring models in parallel benefit from this immediacy. In OPIT labs, students create complete Kubernetes environments in two minutes, run load tests, and tear them down as soon as they’re done, paying only for the actual minutes.

Similarly, a biomedical research group can temporarily allocate hundreds of GPUs to train a deep-learning model and release them immediately afterwards, without tying up capital in hardware that will age rapidly. This flexibility allows the user to adapt resources to their needs in real time. There are no hard and fast constraints: you can activate a single machine and deactivate it when it is no longer needed, or start dozens of extra instances for a limited time and then release them. You only pay for what you actually use, without waste.

Wide network access: applications that follow the user everywhere

Once access to resources is made instantaneous, it is necessary to ensure that these resources are accessible from any location and device, maintaining a uniform user experience. The cloud lives on the network and guarantees ubiquity and independence from the device.

A web app based on HTTP/S can be used from a laptop, tablet or smartphone, without the user knowing where the containers are running. Geographic transparency allows for multi-channel strategies: you start a purchase on your phone and complete it on your desktop without interruptions. For the PA, this means providing digital identities everywhere, for the private sector, offering 24/7 customer service.

Broad access moves security from the physical perimeter to the digital identity and introduces zero-trust architecture, where every request is authenticated and authorized regardless of the user’s location.

All you need is a network connection to use the resources: from the office, from home or on the move, from computers and mobile devices. Access is independent of the platform used and occurs via standard web protocols and interfaces, ensuring interoperability.

Shared Resource Pools: The Economy of Scale of Multi-Tenancy

Ubiquitous access would be prohibitive without a sustainable economic model. This is where infrastructure sharing comes in.

The cloud provider’s infrastructure aggregates and shares computational resources among multiple users according to a multi-tenant model. The economies of scale of hyperscale data centers reduce costs and emissions, putting cutting-edge technologies within the reach of startups and SMBs.

Pooling centralizes patching, security, and capacity planning, freeing IT teams from repetitive tasks and reducing the company’s carbon footprint. Providers reinvest energy savings in next-generation hardware and immersion cooling research programs, amplifying the collective benefit.

Rapid Elasticity: Scaling at the Speed ​​of Business

Sharing resources is only effective if their allocation follows business demand in real time. With elasticity, the infrastructure expands or reduces resources in minutes following the load. The system behaves like a rubber band: if more power or more instances are needed to deal with a traffic spike, it automatically scales in real time; when demand drops, the additional resources are deactivated just as quickly.

This flexibility seems to offer unlimited resources. In practice, a company no longer has to buy excess servers to cover peaks in demand (which would remain unused during periods of low activity), but can obtain additional capacity from the cloud only when needed. The economic advantage is considerable: large initial investments are avoided and only the capacity actually used during peak periods is paid for.

In the OPIT cloud automation lab, students simulate a streaming platform that creates new Kubernetes pods as viewers increase and deletes them when the audience drops: a concrete example of balancing user experience and cost control. The effect is twofold: the user does not suffer slowdowns and the company avoids tying up capital in underutilized servers.

Metered Service: Transparency and Cost Governance

The dynamic scale generated by elasticity requires precise visibility into consumption and expenses : without measurement there is no governance. Metering makes every second of CPU, every gigabyte and every API call visible. Every consumption parameter is tracked and made available in transparent reports.

This data enables pay-per-use pricing , i.e. charges proportional to actual usage. For the customer, this translates into variable costs: you only pay for the resources actually consumed. Transparency helps you plan your budget: thanks to real-time data, it is easier to optimize expenses, for example by turning off unused resources. This eliminates unnecessary fixed costs, encouraging efficient use of resources.

The systemic value of the five pillars

When the five pillars work together, the effect is multiplier . Self-service and elasticity enable rapid response to workload changes, increasing or decreasing resources in real time, and fuel continuous experimentation; ubiquitous access and pooling provide global scalability; measurement ensures economic and environmental sustainability.

It is no surprise that the Italian market will grow from $12.4 billion in 2025 to $31.7 billion in 2030 with a CAGR of 20.6%. Manufacturers and retailers are migrating mission-critical loads to cloud-native platforms , gaining real-time data insights and reducing time to value .

From the laboratory to the business strategy

From theory to practice: the NIST pillars become a compass for the digital transformation of companies and Public Administration. In the classroom, we start with concrete exercises – such as the stress test of a video platform – to demonstrate the real impact of the five pillars on performance, costs and environmental KPIs.

The same approach can guide CIOs and innovators: if processes, governance and culture embody self-service, ubiquity, pooling, elasticity and measurement, the organization is ready to capture the full value of the cloud. Otherwise, it is necessary to recalibrate the strategy by investing in training, pilot projects and partnerships with providers. The NIST pillars thus confirm themselves not only as a classification model, but as the toolbox with which to build data-driven and sustainable enterprises.

Read the full article below (in Italian):

Read the article
ChatGPT Action Figures & Responsible Artificial Intelligence
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 23, 2025 6 min read

You’ve probably seen two of the most recent popular social media trends. The first is creating and posting your personalized action figure version of yourself, complete with personalized accessories, from a yoga mat to your favorite musical instrument. There is also the Studio Ghibli trend, which creates an image of you in the style of a character from one of the animation studio’s popular films.

Both of these are possible thanks to OpenAI’s GPT-4o-powered image generator. But what are you risking when you upload a picture to generate this kind of content? More than you might imagine, according to Tom Vazdar, chair of cybersecurity at the Open Institute of Technology (OPIT), in a recent interview with Wired. Let’s take a closer look at the risks and how this issue ties into the issue of responsible artificial intelligence.

Uploading Your Image

To get a personalized image of yourself back from ChatGPT, you need to upload an actual photo, or potentially multiple images, and tell ChatGPT what you want. But in addition to using your image to generate content for you, OpenAI could also be using your willingly submitted image to help train its AI model. Vazdar, who is also CEO and AI & Cybersecurity Strategist at Riskoria and a board member for the Croatian AI Association, says that this kind of content is “a gold mine for training generative models,” but you have limited power over how that image is integrated into their training strategy.

Plus, you are uploading much more than just an image of yourself. Vazdar reminds us that we are handing over “an entire bundle of metadata.” This includes the EXIF data attached to the image, such as exactly when and where the photo was taken. And your photo may have more content in it than you imagine, with the background – including people, landmarks, and objects – also able to be tied to that time and place.

In addition to this, OpenAI also collects data about the device that you are using to engage with the platform, and, according to Vazdar, “There’s also behavioral data, such as what you typed, what kind of image you asked for, how you interacted with the interface and the frequency of those actions.”

After all that, OpenAI knows a lot about you, and soon, so could their AI model, because it is studying you.

How OpenAI Uses Your Data

OpenAI claims that they did not orchestrate these social media trends simply to get training data for their AI, and that’s almost certainly true. But they also aren’t denying that access to that freely uploaded data is a bonus. As Vazdar points out, “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

OpenAI isn’t the only company using your data to train its AI. Meta recently updated its privacy policy to allow the company to use your personal information on Meta-related services, such as Facebook, Instagram, and WhatsApp, to train its AI. While it is possible to opt-out, Meta isn’t advertising that fact or making it easy, which means that most users are sharing their data by default.

You can also control what happens with your data when using ChatGPT. Again, while not well publicized, you can use ChatGPT’s self-service tools to access, export, and delete your personal information, and opt out of having your content used to improve OpenAI’s model. Nevertheless, even if you choose these options, it is still worth it to strip data like location and time from images before uploading them and to consider the privacy of any images, including people and objects in the background, before sharing.

Are Data Protection Laws Keeping Up?

OpenAI and Meta need to provide these kinds of opt-outs due to data protection laws, such as GDPR in the EU and the UK. GDPR gives you the right to access or delete your data, and the use of biometric data requires your explicit consent. However, your photo only becomes biometric data when it is processed using a specific technical measure that allows for the unique identification of an individual.

But just because ChatGPT is not using this technology, doesn’t mean that ChatGPT can’t learn a lot about you from your images.

AI and Ethics Concerns

But you might wonder, “Isn’t it a good thing that AI is being trained using a diverse range of photos?” After all, there have been widespread reports in the past of AI struggling to recognize black faces because they have been trained mostly on white faces. Similarly, there have been reports of bias within AI due to the information it receives. Doesn’t sharing from a wide range of users help combat that? Yes, but there is so much more that could be done with that data without your knowledge or consent.

One of the biggest risks is that the data can be manipulated for marketing purposes, not just to get you to buy products, but also potentially to manipulate behavior. Take, for instance, the Cambridge Analytica scandal, which saw AI used to manipulate voters and the proliferation of deepfakes sharing false news.

Vazdar believes that AI should be used to promote human freedom and autonomy, not threaten it. It should be something that benefits humanity in the broadest possible sense, and not just those with the power to develop and profit from AI.

Responsible Artificial Intelligence

OPIT’s Master’s in Responsible AI combines technical expertise with a focus on the ethical implications of AI, diving into questions such as this one. Focusing on real-world applications, the course considers sustainable AI, environmental impact, ethical considerations, and social responsibility.

Completed over three or four 13-week terms, it starts with a foundation in technical artificial intelligence and then moves on to advanced AI applications. Students finish with a Capstone project, which sees them apply what they have learned to real-world problems.

Read the article