How do machine learning professionals make data readable and accessible? What techniques do they use to dissect raw information?

One of these techniques is clustering. Data clustering is the process of grouping items in a data set together. These items are related, allowing key stakeholders to make critical strategic decisions using the insights.

After preparing data, which is what specialists do 50%-80% of the time, clustering takes center stage. It forms structures other members of the company can understand more easily, even if they lack advanced technical knowledge.

Clustering in machine learning involves many techniques to help accomplish this goal. Here is a detailed overview of those techniques.

Clustering Techniques

Data science is an ever-changing field with lots of variables and fluctuations. However, one thing’s for sure – whether you want to practice clustering in data mining or clustering in machine learning, you can use a wide array of tools to automate your efforts.

Partitioning Methods

The first groups of techniques are the so-called partitioning methods. There are three main sub-types of this model.

K-Means Clustering

K-means clustering is an effective yet straightforward clustering system. To execute this technique, you need to assign clusters in your data sets. From there, define your number K, which tells the program how many centroids (“coordinates” representing the center of your clusters) you need. The machine then recognizes your K and categorizes data points to nearby clusters.

You can look at K-means clustering like finding the center of a triangle. Zeroing in on the center lets you divide the triangle into several areas, allowing you to make additional calculations.

And the name K-means clustering is pretty self-explanatory. It refers to finding the median value of your clusters – centroids.

K-Medoids Clustering

K-means clustering is useful but is prone to so-called “outlier data.” This information is different from other data points and can merge with others. Data miners need a reliable way to deal with this issue.

Enter K-medoids clustering.

It’s similar to K-means clustering, but just like planes overcome gravity, so does K-medoids clustering overcome outliers. It utilizes “medoids” as the reference points – which contain maximum similarities with other data points in your cluster. As a result, no outliers interfere with relevant data points, making this one of the most dependable clustering techniques in data mining.

Fuzzy C-Means Clustering

Fuzzy C-means clustering is all about calculating the distance from the median point to individual data points. If a data point is near the cluster centroid, it’s relevant to the goal you want to accomplish with your data mining. The farther you go from this point, the farther you move the goalpost and decrease relevance.

Hierarchical Methods

Some forms of clustering in machine learning are like textbooks – similar topics are grouped in a chapter and are different from topics in other chapters. That’s precisely what hierarchical clustering aims to accomplish. You can the following methods to create data hierarchies.

Agglomerative Clustering

Agglomerative clustering is one of the simplest forms of hierarchical clustering. It divides your data set into several clusters, making sure data points are similar to other points in the same cluster. By grouping them, you can see the differences between individual clusters.

Before the execution, each data point is a full-fledged cluster. The technique helps you form more clusters, making this a bottom-up strategy.

Divisive Clustering

Divisive clustering lies on the other end of the hierarchical spectrum. Here, you start with just one cluster and create more as you move through your data set. This top-down approach produces as many clusters as necessary until you achieve the requested number of partitions.

Density-Based Methods

Birds of a feather flock together. That’s the basic premise of density-based methods. Data points that are close to each other form high-density clusters, indicating their cohesiveness. The two primary density-based methods of clustering in data mining are DBSCAN and OPTICS.

DBSCAN (Density-Based Spatial Clustering of Applications With Noise)

Related data groups are close to each other, forming high-density areas in your data sets. The DBSCAN method picks up on these areas and groups information accordingly.

OPTICS (Ordering Points to Identify the Clustering Structure)

The OPTICS technique is like DBSCAN, grouping data points according to their density. The only major difference is that OPTICS can identify varying densities in larger groups.

Grid-Based Methods

You can see grids on practically every corner. They can easily be found in your house or your car. They’re also prevalent in clustering.

STING (Statistical Information Grid)

The STING grid method divides a data point into rectangular grills. Afterward, you determine certain parameters for your cells to categorize information.

CLIQUE (Clustering in QUEst)

Agglomerative clustering isn’t the only bottom-up clustering method on our list. There’s also the CLIQUE technique. It detects clusters in your environment and combines them according to your parameters.

Model-Based Methods

Different clustering techniques have different assumptions. The assumption of model-based methods is that a model generates specific data points. Several such models are used here.

Gaussian Mixture Models (GMM)

The aim of Gaussian mixture models is to identify so-called Gaussian distributions. Each distribution is a cluster, and any information within a distribution is related.

Hidden Markov Models (HMM)

Most people use HMM to determine the probability of certain outcomes. Once they calculate the probability, they can figure out the distance between individual data points for clustering purposes.

Spectral Clustering

If you often deal with information organized in graphs, spectral clustering can be your best friend. It finds related groups of notes according to linked edges.

Comparison of Clustering Techniques

It’s hard to say that one algorithm is superior to another because each has a specific purpose. Nevertheless, some clustering techniques might be especially useful in particular contexts:

  • OPTICS beats DBSCAN when clustering data points with different densities.
  • K-means outperforms divisive clustering when you wish to reduce the distance between a data point and a cluster.
  • Spectral clustering is easier to implement than the STING and CLIQUE methods.

Cluster Analysis

You can’t put your feet up after clustering information. The next step is to analyze the groups to extract meaningful information.

Importance of Cluster Analysis in Data Mining

The importance of clustering in data mining can be compared to the importance of sunlight in tree growth. You can’t get valuable insights without analyzing your clusters. In turn, stakeholders wouldn’t be able to make critical decisions about improving their marketing efforts, target audience, and other key aspects.

Steps in Cluster Analysis

Just like the production of cars consists of many steps (e.g., assembling the engine, making the chassis, painting, etc.), cluster analysis is a multi-stage process:

Data Preprocessing

Noise and other issues plague raw information. Data preprocessing solves this issue by making data more understandable.

Feature Selection

You zero in on specific features of a cluster to identify those clusters more easily. Plus, feature selection allows you to store information in a smaller space.

Clustering Algorithm Selection

Choosing the right clustering algorithm is critical. You need to ensure your algorithm is compatible with the end result you wish to achieve. The best way to do so is to determine how you want to establish the relatedness of the information (e.g., determining median distances or densities).

Cluster Validation

In addition to making your data points easily digestible, you also need to verify whether your clustering process is legit. That’s where cluster validation comes in.

Cluster Validation Techniques

There are three main cluster validation techniques when performing clustering in machine learning:

Internal Validation

Internal validation evaluates your clustering based on internal information.

External Validation

External validation assesses a clustering process by referencing external data.

Relative Validation

You can vary your number of clusters or other parameters to evaluate your clustering. This procedure is known as relative validation.

Applications of Clustering in Data Mining

Clustering may sound a bit abstract, but it has numerous applications in data mining.

  • Customer Segmentation – This is the most obvious application of clustering. You can group customers according to different factors, like age and interests, for better targeting.
  • Anomaly Detection – Detecting anomalies or outliers is essential for many industries, such as healthcare.
  • Image Segmentation – You use data clustering if you want to recognize a certain object in an image.
  • Document Clustering – Organizing documents is effortless with document clustering.
  • Bioinformatics and Gene Expression Analysis – Grouping related genes together is relatively simple with data clustering.

Challenges and Future Directions

  • Scalability – One of the biggest challenges of data clustering is expected to be applying the process to larger datasets. Addressing this problem is essential in a world with ever-increasing amounts of information.
  • Handling High-Dimensional Data – Future systems may be able to cluster data with thousands of dimensions.
  • Dealing with Noise and Outliers – Specialists hope to enhance the ability of their clustering systems to reduce noise and lessen the influence of outliers.
  • Dynamic Data and Evolving Clusters – Updates can change entire clusters. Professionals will need to adapt to this environment to retain efficiency.

Elevate Your Data Mining Knowledge

There are a vast number of techniques for clustering in machine learning. From centroid-based solutions to density-focused approaches, you can take many directions when grouping data.

Mastering them is essential for any data miner, as they provide insights into crucial information. On top of that, the data science industry is expected to hit nearly $26 billion by 2026, which is why clustering will become even more prevalent.

Related posts

Wired: Think Twice Before Creating That ChatGPT Action Figure
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
May 12, 2025 6 min read

Source:

  • Wired, published on May 01st, 2025

People are using ChatGPT’s new image generator to take part in viral social media trends. But using it also puts your privacy at risk—unless you take a few simple steps to protect yourself.

By Kate O’Flaherty

At the start of April, an influx of action figures started appearing on social media sites including LinkedIn and X. Each figure depicted the person who had created it with uncanny accuracy, complete with personalized accessories such as reusable coffee cups, yoga mats, and headphones.

All this is possible because of OpenAI’s new GPT-4o-powered image generator, which supercharges ChatGPT’s ability to edit pictures, render text, and more. OpenAI’s ChatGPT image generator can also create pictures in the style of Japanese animated film company Studio Ghibli—a trend that quickly went viral, too.

The images are fun and easy to make—all you need is a free ChatGPT account and a photo. Yet to create an action figure or Studio Ghibli-style image, you also need to hand over a lot of data to OpenAI, which could be used to train its models.

Hidden Data

The data you are giving away when you use an AI image editor is often hidden. Every time you upload an image to ChatGPT, you’re potentially handing over “an entire bundle of metadata,” says Tom Vazdar, area chair for cybersecurity at Open Institute of Technology. “That includes the EXIF data attached to the image file, such as the time the photo was taken and the GPS coordinates of where it was shot.”

OpenAI also collects data about the device you’re using to access the platform. That means your device type, operating system, browser version, and unique identifiers, says Vazdar. “And because platforms like ChatGPT operate conversationally, there’s also behavioral data, such as what you typed, what kind of images you asked for, how you interacted with the interface and the frequency of those actions.”

It’s not just your face. If you upload a high-resolution photo, you’re giving OpenAI whatever else is in the image, too—the background, other people, things in your room and anything readable such as documents or badges, says Camden Woollven, group head of AI product marketing at risk management firm GRC International Group.

This type of voluntarily provided, consent-backed data is “a gold mine for training generative models,” especially multimodal ones that rely on visual inputs, says Vazdar.

OpenAI denies it is orchestrating viral photo trends as a ploy to collect user data, yet the firm certainly gains an advantage from it. OpenAI doesn’t need to scrape the web for your face if you’re happily uploading it yourself, Vazdar points out. “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

OpenAI says it does not actively seek out personal information to train models—and it doesn’t use public data on the internet to build profiles about people to advertise to them or sell their data, an OpenAI spokesperson tells WIRED. However, under OpenAI’s current privacy policy, images submitted through ChatGPT can be retained and used to improve its models.

Any data, prompts, or requests you share helps teach the algorithm—and personalized information helps fine tune it further, says Jake Moore, global cybersecurity adviser at security outfit ESET, who created his own action figure to demonstrate the privacy risks of the trend on LinkedIn.

Uncanny Likeness

In some markets, your photos are protected by regulation. In the UK and EU, data-protection regulation including the GDPR offer strong protections, including the right to access or delete your data. At the same time, use of biometric data requires explicit consent.

However, photographs become biometric data only when processed through a specific technical means allowing the unique identification of a specific individual, says Melissa Hall, senior associate at law firm MFMac. Processing an image to create a cartoon version of the subject in the original photograph is “unlikely to meet this definition,” she says.

Meanwhile, in the US, privacy protections vary. “California and Illinois are leading with stronger data protection laws, but there is no standard position across all US states,” says Annalisa Checchi, a partner at IP law firm Ionic Legal. And OpenAI’s privacy policy doesn’t contain an explicit carve-out for likeness or biometric data, which “creates a grey area for stylized facial uploads,” Checchi says.

The risks include your image or likeness being retained, potentially used to train future models, or combined with other data for profiling, says Checchi. “While these platforms often prioritize safety, the long-term use of your likeness is still poorly understood—and hard to retract once uploaded.”

OpenAI says its users’ privacy and security is a top priority. The firm wants its AI models to learn about the world, not private individuals, and it actively minimizes the collection of personal information, an OpenAI spokesperson tells WIRED.

Meanwhile, users have control over how their data is used, with self-service tools to access, export, or delete personal information. You can also opt out of having content used to improve models, according to OpenAI.

ChatGPT Free, Plus, and Pro users can control whether they contribute to future model improvements in their data controls settings. OpenAI does not train on ChatGPT Team, Enterprise, and Edu customer data⁠ by default, according to the company.

Read the full article below:

Read the article
LADBible and Yahoo News: Viral AI trend could present huge privacy concerns, says expert
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
May 12, 2025 4 min read

Source:


You’ve probably seen them all over Instagram

By James Moorhouse

Experts have warned against participating in a viral social media trend which sees people use ChatGPT to create an action figure version of themselves.

If you’ve spent any time whatsoever doomscrolling on Instagram or TikTok or dare I say it, LinkedIn recently, you’ll be all too aware of the viral trend.

Obviously, there’s nothing more entertaining and frivolous than seeing AI generated versions of your co-workers and their cute little laptops and piña coladas, but it turns out that it might not be the best idea to take part.

There may well be some benefits to artificial intelligence but often it can produce some pretty disturbing results. Earlier this year, a lad from Norway sued ChatGPT after it falsely claimed he had been convicted of killing two of his kids.

Unfortunately, if you don’t like AI, then you’re going to have to accept that it’s going to become a regular part of our lives. You only need to look at WhatsApp or Facebook messenger to realise that. But it’s always worth saying please and thank you to ChatGPT just in case society does collapse and the AI robots take over, in the hope that they treat you mercifully. Although it might cost them a little more electricity.

Anyway, in case you’re thinking of getting involved in this latest AI trend and sharing your face and your favourite hobbies with a high tech robot, maybe don’t. You don’t want to end up starring in your own Netflix series, à la Black Mirror.

Tom Vazdar, area chair for cybersecurity at Open Institute of Technology, spoke with Wired about some of the dangers of sharing personal details about yourself with AI.

Every time you upload an image to ChatGPT, you’re potentially handing over ‘an entire bundle of metadata’ he revealed.

Vazdar added: “That includes the EXIF data attached to the image file, such as the time the photo was taken and the GPS coordinates of where it was shot.

“Because platforms like ChatGPT operate conversationally, there’s also behavioural data, such as what you typed, what kind of images you asked for, how you interacted with the interface and the frequency of those actions.”

Essentially, if you upload a photo of your face, you’re not just giving AI access to your face, but also the whatever is in the background, such as the location or other people that might feature.

Vazdar concluded: “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

While we’re at it, maybe stop using ChatGPT for your university essays and general basic questions you can find the answer to on Google as well. The last thing you need is AI knowing you don’t know how to do something basic if it does takeover the world.

Read the full article below:

Read the article