For most people, identifying objects surrounding them is an easy task.

Let’s say you’re in your office. You can probably casually list objects like desks, computers, filing cabinets, printers, and so on. While this action seems simple on the surface, human vision is actually quite complex.

So, it’s not surprising that computer vision – a relatively new branch of technology aiming to replicate human vision – is equally, if not more, complex.

But before we dive into these complexities, let’s understand the basics – what is computer vision?

Computer vision is an artificial intelligence (AI) field focused on enabling computers to identify and process objects in the visual world. This technology also equips computers to take action and make recommendations based on the visual input they receive.

Simply put, computer vision enables machines to see and understand.

Learning the computer vision definition is just the beginning of understanding this fascinating field. So, let’s explore the ins and outs of computer vision, from fundamental principles to future trends.

History of Computer Vision

While major breakthroughs in computer vision have occurred relatively recently, scientists have been training machines to “see” for over 60 years.

To do the math – the research on computer vision started in the late 1950s.

Interestingly, one of the earliest test subjects wasn’t a computer. Instead, it was a cat! Scientists used a little feline helper to examine how their nerve cells respond to various images. Thanks to this experiment, they concluded that detecting simple shapes is the first stage in image processing.

As AI emerged as an academic field of study in the 1960s, a decade-long quest to help machines mimic human vision officially began.

Since then, there have been several significant milestones in computer vision, AI, and deep learning. Here’s a quick rundown for you:

  • 1970s – Computer vision was used commercially for the first time to help interpret written text for the visually impaired.
  • 1980s – Scientists developed convolutional neural networks (CNNs), a key component in computer vision and image processing.
  • 1990s – Facial recognition tools became highly popular, thanks to a shiny new thing called the internet. For the first time, large sets of images became available online.
  • 2000s – Tagging and annotating visual data sets were standardized.
  • 2010s – Alex Krizhevsky developed a CNN model called AlexNet, drastically reducing the error rate in image recognition (and winning an international image recognition contest in the process).

Today, computer vision algorithms and techniques are rapidly developing and improving. They owe this to an unprecedented amount of visual data and more powerful hardware.

Thanks to these advancements, 99% accuracy has been achieved for computer vision, meaning it’s currently more accurate than human vision at quickly identifying visual inputs.

Fundamentals of Computer Vision

New functionalities are constantly added to the computer vision systems being developed. Still, this doesn’t take away from the same fundamental functions these systems share.

Image Acquisition and Processing

Without visual input, there would be no computer vision. So, let’s start at the beginning.

The image acquisition function first asks the following question: “What imaging device is used to produce the digital image?”

Depending on the device, the resulting data can be a 2D, 3D image, or an image sequence. These images are then processed, allowing the machine to verify whether the visual input contains satisfying data.

Feature Extraction and Representation

The next question then becomes, “What specific features can be extracted from the image?”

By features, we mean measurable pieces of data unique to specific objects in the image.

Feature extraction focuses on extracting lines and edges and localizing interest points like corners and blobs. To successfully extract these features, the machine breaks the initial data set into more manageable chunks.

Object Recognition and Classification

Next, the computer vision system aims to answer: “What objects or object categories are present in the image, and where are they?”

This interpretive technique recognizes and classifies objects based on large amounts of pre-learned objects and object categories.

Image Segmentation and Scene Understanding

Besides observing what is in the image, today’s computer vision systems can act based on those observations.

In image segmentation, computer vision algorithms divide the image into multiple regions and examine the relevant regions separately. This allows them to gain a full understanding of the scene, including the spatial and functional relationships between the present objects.

Motion Analysis and Tracking

Motion analysis studies movements in a sequence of digital images. This technique correlates to motion tracking, which follows the movement of objects of interest. Both techniques are commonly used in manufacturing for monitoring machinery.

Key Techniques and Algorithms in Computer Vision

Computer vision is a fairly complex task. For starters, it needs a huge amount of data. Once the data is all there, the system runs multiple analyses to achieve image recognition.

This might sound simple, but this process isn’t exactly straightforward.

Think of computer vision as a detective solving a crime. What does the detective need to do to identify the criminal? Piece together various clues.

Similarly (albeit with less danger), a computer vision model relies on colors, shapes, and patterns to piece together an object and identify its features.

Let’s discuss the techniques and algorithms this model uses to achieve its end result.

Convolutional Neural Networks (CNNs)

In computer vision, CNNs extract patterns and employ mathematical operations to estimate what image they’re seeing. And that’s all there really is to it. They continue performing the same mathematical operation until they verify the accuracy of their estimate.

Deep Learning and Transfer Learning

The advent of deep learning removed many constraints that prevented computer vision from being widely used. On top of that, (and luckily for computer scientists!), it also eliminated all the tedious manual work.

Essentially, deep learning enables a computer to learn about visual data independently. Computer scientists only need to develop a good algorithm, and the machine will take care of the rest.

Alternatively, computer vision can use a pre-trained model as a starting point. This concept is known as transfer learning.

Edge Detection and Feature Extraction Techniques

Edge detection is one of the most prominent feature extraction techniques.

As the name suggests, it can identify the boundaries of an object and extract its features. As always, the ultimate goal is identifying the object in the picture. To achieve this, edge detection uses an algorithm that identifies differences in pixel brightness (after transforming the data into a grayscale image).

Optical Flow and Motion Estimation

Optical flow is a computer vision technique that determines how each point of an image or video sequence is moving compared to the image plane. This technique can estimate how fast objects are moving.

Motion estimation, on the other hand, predicts the location of objects in subsequent frames of a video sequence.

These techniques are used in object tracking and autonomous navigation.

Image Registration and Stitching

Image registration and stitching are computer vision techniques used to combine multiple images. Image registration is responsible for aligning these images, while image stitching overlaps them to produce a single image. Medical professionals use these techniques to track the progress of a disease.

Applications of Computer Vision

Thanks to many technological advances in the field, computer vision has managed to surpass human vision in several regards. As a result, it’s used in various applications across multiple industries.

Robotics and Automation

Improving robotics was one of the original reasons for developing computer vision. So, it isn’t surprising this technique is used extensively in robotics and automation.

Computer vision can be used to:

  • Control and automate industrial processes
  • Perform automatic inspections in manufacturing applications
  • Identify product and machine defects in real time
  • Operate autonomous vehicles
  • Operate drones (and capture aerial imaging)

Security and Surveillance

Computer vision has numerous applications in video surveillance, including:

  • Facial recognition for identification purposes
  • Anomaly detection for spotting unusual patterns
  • People counting for retail analytics
  • Crowd monitoring for public safety

Healthcare and Medical Imaging

Healthcare is one of the most prominent fields of computer vision applications. Here, this technology is employed to:

  • Establish more accurate disease diagnoses
  • Analyze MRI, CAT, and X-ray scans
  • Enhance medical images interpreted by humans
  • Assist surgeons during surgery

Entertainment and Gaming

Computer vision techniques are highly useful in the entertainment industry, supporting the creation of visual effects and motion capture for animation.

Good news for gamers, too – computer vision aids augmented and virtual reality in creating the ultimate gaming experience.

Retail and E-Commerce

Self-check-out points can significantly enhance the shopping experience. And guess what can help establish them? That’s right – computer vision. But that’s not all. This technology also helps retailers with inventory management, allowing quicker detection of out-of-stock products.

In e-commerce, computer vision facilitates visual search and product recommendation, streamlining the (often frustrating) online purchasing process.

Challenges and Limitations of Computer Vision

There’s no doubt computer vision has experienced some major breakthroughs in recent years. Still, no technology is without flaws.

Here are some of the challenges that computer scientists hope to overcome in the near future:

  • The data for training computer vision models often lack in quantity or quality.
  • There’s a need for more specialists who can train and monitor computer vision models.
  • Computers still struggle to process incomplete, distorted, and previously unseen visual data.
  • Building computer vision systems is still complex, time-consuming, and costly.
  • Many people have privacy and ethical concerns surrounding computer vision, especially for surveillance.

Future Trends and Developments in Computer Vision

As the field of computer vision continues to develop, there should be no shortage of changes and improvements.

These include integration with other AI technologies (such as neuro-symbolic and explainable AI), which will continue to evolve as developing hardware adds new capabilities and capacities that enhance computer vision. Each advancement brings with it the opportunity for other industries (and more complex applications). Construction gives us a good example, as computer vision takes us away from the days of relying on hard hats and signage, moving us toward a future in which computers can actively detect, and alert site foremen too, unsafe behavior.

The Future Looks Bright for Computer Vision

Computer vision is one of the most remarkable concepts in the world of deep learning and artificial intelligence. This field will undoubtedly continue to grow at an impressive speed, both in terms of research and applications.

Are you interested in further research and professional development in this field? If yes, consider seeking out high-quality education in computer vision.

Related posts

Master the AI Era: Key Skills for Success
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 24, 2025 6 min read

The world is rapidly changing. New technologies such as artificial intelligence (AI) are transforming our lives and work, redefining the definition of “essential office skills.”

So what essential skills do today’s workers need to thrive in a business world undergoing a major digital transformation? It’s a question that Alan Lerner, director at Toptal and lecturer at the Open Institute of Technology (OPIT), addressed in his recent online masterclass.

In a broad overview of the new office landscape, Lerner shares the essential skills leaders need to manage – including artificial intelligence – to keep abreast of trends.

Here are eight essential capabilities business leaders in the AI era need, according to Lerner, which he also detailed in OPIT’s recent Master’s in Digital Business and Innovation webinar.

An Adapting Professional Environment

Lerner started his discussion by quoting naturalist Charles Darwin.

“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change.”

The quote serves to highlight the level of change that we are currently seeing in the professional world, said Lerner.

According to the World Economic Forum’s The Future of Jobs Report 2025, over the next five years 22% of the labor market will be affected by structural change – including job creation and destruction – and much of that change will be enabled by new technologies such as AI and robotics. They expect the displacement of 92 million existing jobs and the creation of 170 million new jobs by 2030.

While there will be significant growth in frontline jobs – such as delivery drivers, construction workers, and care workers – the fastest-growing jobs will be tech-related roles, including big data specialists, FinTech engineers, and AI and machine learning specialists, while the greatest decline will be in clerical and secretarial roles. The report also predicts that most workers can anticipate that 39% of their existing skill set will be transformed or outdated in five years.

Lerner also highlighted key findings in the Accenture Life Trends 2025 Report, which explores behaviors and attitudes related to business, technology, and social shifts. The report noted five key trends:

  • Cost of Hesitation – People are becoming more wary of the information they receive online.
  • The Parent Trap – Parents and governments are increasingly concerned with helping the younger generation shape a safe relationship with digital technology.
  • Impatience Economy – People are looking for quick solutions over traditional methods to achieve their health and financial goals.
  • The Dignity of Work – Employees desire to feel inspired, to be entrusted with agency, and to achieve a work-life balance.
  • Social Rewilding – People seek to disconnect and focus on satisfying activities and meaningful interactions.

These are consumer and employee demands representing opportunities for change in the modern business landscape.

Key Capabilities for the AI Era

Businesses are using a variety of strategies to adapt, though not always strategically. According to McClean & Company’s HR Trends Report 2025, 42% of respondents said they are currently implementing AI solutions, but only 7% have a documented AI implementation strategy.

This approach reflects the newness of the technology, with many still unsure of the best way to leverage AI, but also feeling the pressure to adopt and adapt, experiment, and fail forward.

So, what skills do leaders need to lead in an environment with both transformation and uncertainty? Lerner highlighted eight essential capabilities, independent of technology.

Capability 1: Manage Complexity

Leaders need to be able to solve problems and make decisions under fast-changing conditions. This requires:

  • Being able to look at and understand organizations as complex social-technical systems
  • Keeping a continuous eye on change and adopting an “outside-in” vision of their organization
  • Moving fast and fixing things faster
  • Embracing digital literacy and technological capabilities

Capability 2: Leverage Networks

Leaders need to develop networks systematically to achieve organizational goals because it is no longer possible to work within silos. Leaders should:

  • Use networks to gain insights into complex problems
  • Create networks to enhance influence
  • Treat networks as mutually rewarding relationships
  • Develop a robust profile that can be adapted for different networks

Capability 3: Think and Act “Global”

Leaders should benchmark using global best practices but adapt them to local challenges and the needs of their organization. This requires:

  • Identifying what great companies are achieving and seeking data to understand underlying patterns
  • Developing perspectives to craft global strategies that incorporate regional and local tactics
  • Learning how to navigate culturally complex and nuanced business solutions

Capability 4: Inspire Engagement

Leaders must foster a culture that creates meaningful connections between employees and organizational values. This means:

  • Understanding individual values and needs
  • Shaping projects and assignments to meet different values and needs
  • Fostering an inclusive work environment with plenty of psychological safety
  • Developing meaningful conversations and both providing and receiving feedback
  • Sharing advice and asking for help when needed

Capability 5: Communicate Strategically

Leaders should develop crisp, clear messaging adaptable to various audiences and focus on active listening. Achieving this involves:

  • Creating their communication style and finding their unique voice
  • Developing storytelling skills
  • Utilizing a data-centric and fact-based approach to communication
  • Continual practice and asking for feedback

Capability 6: Foster Innovation

Leaders should collaborate with experts to build a reliable innovation process and a creative environment where new ideas thrive. Essential steps include:

  • Developing or enhancing structures that best support innovation
  • Documenting and refreshing innovation systems, processes, and practices
  • Encouraging people to discover new ways of working
  • Aiming to think outside the box and develop a growth mindset
  • Trying to be as “tech-savvy” as possible

Capability 7: Cultivate Learning Agility

Leaders should always seek out and learn new things and not be afraid to ask questions. This involves:

  • Adopting a lifelong learning mindset
  • Seeking opportunities to discover new approaches and skills
  • Enhancing problem-solving skills
  • Reviewing both successful and unsuccessful case studies

Capability 8: Develop Personal Adaptability

Leaders should be focused on being effective when facing uncertainty and adapting to change with vigor. Therefore, leaders should:

  • Be flexible about their approach to facing challenging situations
  • Build resilience by effectively managing stress, time, and energy
  • Recognize when past approaches do not work in current situations
  • Learn from and capitalize on mistakes

Curiosity and Adaptability

With the eight key capabilities in mind, Lerner suggests that curiosity and adaptability are the key skills that everyone needs to thrive in the current environment.

He also advocates for lifelong learning and teaches several key courses at OPIT which can lead to a Bachelor’s Degree in Digital Business.

Read the article
Lessons From History: How Fraud Tactics From the 18th Century Still Impact Us Today
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2025 6 min read

Many people treat cyber threats and digital fraud as a new phenomenon that only appeared with the development of the internet. But fraud – intentional deceit to manipulate a victim – has always existed; it is just the tools that have changed.

In a recent online course for the Open Institute of Technology (OPIT), AI & Cybersecurity Strategist Tom Vazdar, chair of OPIT’s Master’s Degree in Enterprise Cybersecurity, demonstrated the striking parallels between some of the famous fraud cases of the 18th century and modern cyber fraud.

Why does the history of fraud matter?

Primarily because the psychology and fraud tactics have remained consistent over the centuries. While cybersecurity is a tool that can combat modern digital fraud threats, no defense strategy will be successful without addressing the underlying psychology and tactics.

These historical fraud cases Vazdar addresses offer valuable lessons for current and future cybersecurity approaches.

The South Sea Bubble (1720)

The South Sea Bubble was one of the first stock market crashes in history. While it may not have had the same far-reaching consequences as the Black Thursday crash of 1929 or the 2008 crash, it shows how fraud can lead to stock market bubbles and advantages for insider traders.

The South Sea Company was a British company that emerged to monopolize trade with the Spanish colonies in South America. The company promised investors significant returns but provided no evidence of its activities. This saw the stock prices grow from £100 to £1,000 in a matter of months, then crash when the company’s weakness was revealed.

Many people lost a significant amount of money, including Sir Isaac Newton, prompting the statement, “I can calculate the movement of the stars, but not the madness of men.

Investors often have no way to verify a company’s claim, making stock markets a fertile ground for manipulation and fraud since their inception. When one party has more information than another, it creates the opportunity for fraud. This can be seen today in Ponzi schemes, tech stock bubbles driven by manipulative media coverage, and initial cryptocurrency offerings.

The Diamond Necklace Affair (1784-1785)

The Diamond Necklace Affair is an infamous incident of fraud linked to the French Revolution. An early example of identity theft, it also demonstrates that the harm caused by such a crime can go far beyond financial.

A French aristocrat named Jeanne de la Mont convinced Cardinal Louis-René-Édouard, Prince de Rohan into thinking that he was buying a valuable diamond necklace on behalf of Queen Marie Antoinette. De la Mont forged letters from the queen and even had someone impersonate her for a meeting, all while convincing the cardinal of the need for secrecy. The cardinal overlooked several questionable issues because he believed he would gain political benefit from the transaction.

When the scheme finally exposed, it damaged Marie Antoinette’s reputation, despite her lack of involvement in the deception. The story reinforced the public perception of her as a frivolous aristocrat living off the labor of the people. This contributed to the overall resentment of the aristocracy that erupted in the French Revolution and likely played a role in Marie Antoinette’s death. Had she not been seen as frivolous, she might have been allowed to live after her husband’s death.

Today, impersonation scams work in similar ways. For example, a fraudster might forge communication from a CEO to convince employees to release funds or take some other action. The risk of this is only increasing with improved technology such as deepfakes.

Spanish Prisoner Scam (Late 1700s)

The Spanish Prisoner Scam will probably sound very familiar to anyone who received a “Nigerian prince” email in the early 2000s.

Victims received letters from a “wealthy Spanish prisoner” who needed their help to access his fortune. If they sent money to facilitate his escape and travel, he would reward them with greater riches when he regained his fortune. This was only one of many similar scams in the 1700s, often involving follow-up requests for additional payments before the scammer disappeared.

While the “Nigerian prince” scam received enough publicity that it became almost unbelievable that people could fall for it, if done well, these can be psychologically sophisticated scams. The stories play on people’s emotions, get them invested in the person, and enamor them with the idea of being someone helpful and important. A compelling narrative can diminish someone’s critical thinking and cause them to ignore red flags.

Today, these scams are more likely to take the form of inheritance fraud or a lottery scam, where, again, a person has to pay an advance fee to unlock a much bigger reward, playing on the common desire for easy money.

Evolution of Fraud

These examples make it clear that fraud is nothing new and that effective tactics have thrived over the centuries. Technology simply opens up new opportunities for fraud.

While 18th-century scammers had to rely on face-to-face contact and fraudulent letters, in the 19th century they could leverage the telegraph for “urgent” communication and newspaper ads to reach broader audiences. In the 20th century, there were telephones and television ads. Today, there are email, social media, and deepfakes, with new technologies emerging daily.

Rather than quack doctors offering miracle cures, we see online health scams selling diet pills and antiaging products. Rather than impersonating real people, we see fake social media accounts and catfishing. Fraudulent sites convince people to enter their bank details rather than asking them to send money. The anonymity of the digital world protects perpetrators.

But despite the technology changing, the underlying psychology that makes scams successful remains the same:

  • Greed and the desire for easy money
  • Fear of missing out and the belief that a response is urgent
  • Social pressure to “keep up with the Joneses” and the “Bandwagon Effect”
  • Trust in authority without verification

Therefore, the best protection against scams remains the same: critical thinking and skepticism, not technology.

Responding to Fraud

In conclusion, Vazdar shared a series of steps that people should take to protect themselves against fraud:

  • Think before you click.
  • Beware of secrecy and urgency.
  • Verify identities.
  • If it seems too good to be true, be skeptical.
  • Use available security tools.

Those security tools have changed over time and will continue to change, but the underlying steps for identifying and preventing fraud remain the same.

For more insights from Vazdar and other experts in the field, consider enrolling in highly specialized and comprehensive programs like OPIT’s Enterprise Security Master’s program.

Read the article