Computer architecture forms the backbone of computer science. So, it comes as no surprise it’s one of the most researched fields of computing.
But what is computer architecture, and why does it matter?
Basically, computer architecture dictates every aspect of a computer’s functioning, from how it stores data to what it displays on the interface. Not to mention how the hardware and software components connect and interact.
With this in mind, it isn’t difficult to realize the importance of this structure. In fact, computer scientists did this even before they knew what to call it. The first documented computer architecture can be traced back to 1936, 23 years before the term “architecture” was first used when describing a computer. Lyle R. Johnson, an IBM senior staff member, had this honor, realizing that the word organization just doesn’t cut it.
Now that you know why you should care about it, let’s define computer architecture in more detail and outline everything you need to know about it.
Basic Components of Computer Architecture
Computer architecture is an elaborate system where each component has its place and function. You’re probably familiar with some of the basic computer architecture components, such as the CPU and memory. But do you know how those components work together? If not, we’ve got you covered.
Central Processing Unit (CPU)
The central processing unit (CPU) is at the core of any computer architecture. This hardware component only needs instructions written as binary bits to control all its surrounding components.
Think of the CPU as the conductor in an orchestra. Without the conductor, the choir is still there, but they’re waiting for instructions.
Without a functioning CPU, the other components are still there, but there’s no computing.
That’s why the CPU’s components are so important.
Arithmetic Logic Unit (ALU)
Since the binary bits used as instructions by the CPU are numbers, the unit needs an arithmetic component to manipulate them.
That’s where the arithmetic logic unit, or ALU, comes into play.
The ALU is the one that receives the binary bits. Then, it performs an operation on one or more of them. The most common operations include addition, subtraction, AND, OR, and NOT.
Control Unit (CU)
As the name suggests, the control unit (CU) controls all the components of basic computer architecture. It transfers data to and from the ALU, thus dictating how each component behaves.
Registers
Registers are the storage units used by the CPU to hold the current data the ALU is manipulating. Each CPU has a limited number of these registers. For this reason, they can only store a limited amount of data temporarily.
Memory
Storing data is the main purpose of the memory of a computer system. The data in question can be instructions issued by the CPU or larger amounts of permanent data. Either way, a computer’s memory is never empty.
Traditionally, this component can be broken into primary and secondary storage.
Primary Memory
Primary memory occupies a central position in a computer system. It’s the only memory unit that can communicate with the CPU directly. It stores only programs and data currently in use.
There are two types of primary memory:
- RAM (Random Access Memory). In computer architecture, this is equivalent to short-term memory. RAM helps start the computer and only stores data as long as the machine is on and data is being used.
- ROM (Read Only Memory). ROM stores the data used to operate the system. Due to the importance of this data, the ROM stores information even when you turn off the computer.
Secondary Memory
With secondary memory, or auxiliary memory, there’s room for larger amounts of data (which is also permanent). However, this also means that this memory is significantly slower than its primary counterpart.
When it comes to secondary memory, there’s no shortage of choices. There are magnetic discs (hard disk drives (HDDs) and solid-state drives (SSDs)) that provide fast access to stored data. And let’s not forget about optical discs (CD-ROMs and DVDs) that offer portable data storage.
Input/Output (I/O) Devices
The input/output devices allow humans to communicate with a computer. They do so by delivering or receiving data as necessary.
You’re more than likely familiar with the most widely used input devices – the keyboard and the mouse. When it comes to output devices, it’s pretty much the same. The monitor and printer are at the forefront.
Buses
When the CPU wants to communicate with other internal components, it relies on buses.
Data buses are physical signal lines that carry data. Most computer systems use three of these lines:
- Data bus – Transmitting data from the CPU to memory and I/O devices and vice versa
- Address bus – Carrying the address that points to the location the CPU wants to access
- Control bus – Transferring control from one component to the other
Types of Computer Architecture
There’s more than one type of computer architecture. These types mostly share the same base components. However, the setup of these components is what makes them differ.
Von Neumann Architecture
The Von Neumann architecture was proposed by one of the originators of computer architecture as a concept, John Von Neumann. Most modern computers follow this computer architecture.
The Von Neumann architecture has several distinguishing characteristics:
- All instructions are carried out sequentially.
- It doesn’t differentiate between data and instruction. They’re stored in the same memory unit.
- The CPU performs one operation at a time.
Since data and instructions are located in the same place, fetching them is simple and efficient. These two adjectives can describe working with the Von Neumann architecture in general, making it such a popular choice.
Still, there are some disadvantages to keep in mind. For starters, the CPU is often idle since it can only access one bus at a time. If an error causes a mix-up between data and instructions, you can lose important data. Also, defective programs sometimes fail to release memory, causing your computer to crash.
Harvard Architecture
Harvard architecture was named after the famed university. Or, to be more precise, after an IBM computer called “Harvard Mark I” located at the university.
The main difference between this computer architecture and the Von Neumann model is that the Harvard architecture separates the data from the instructions. Accordingly, it allocates separate data, addresses, and control buses for the separate memories.
The biggest advantage of this setup is that the buses can fetch data concurrently, minimizing idle time. The separate buses also reduce the chance of data corruption.
However, this setup also requires a more complex architecture that can be challenging to develop and implement.
Modified Harvard Architecture
Today, only specialty computers use the pure form of Harvard architecture. As for other machines, a modified Harvard architecture does the trick. These modifications aim to soften the rigid separation between data and instructions.
RISC and CISC Architectures
When it comes to processor architecture, there are two primary approaches.
The CISC (Complex Instruction Set Computer) processors have a single processing unit and are pretty straightforward. They tackle one task at a time. As a result, they use less memory. However, they also need more time to complete an instruction.
Over time, the speed of these processors became a problem. This led to a processor redesign, resulting in the RISC architecture.
The new and improved RISC (Reduced Instruction Set Computer) processors feature larger registers and keep frequently used variables within the processor. Thanks to these handy functionalities, they can operate much more quickly.
Instruction Set Architecture (ISA)
Instruction set architecture (ISA) defines the instructions that the processor can read and act upon. This means ISA decides which software can be installed on a particular processor and how efficiently it can perform tasks.
There are three types of instruction set architecture. These types differ based on the placement of instructions, and their names are pretty self-explanatory. For stack-based ISA, the instructions are placed in the stack, a memory unit within the address register. The same principle applies for accumulator-based ISA (a type of register in the CPU) and register-based ISA (multiple registers within the system).
The register-based ISA is most commonly used in modern machines. You’ve probably heard of some of the most popular examples. For CISC architecture, there are x86 and MC68000. As for RISC, SPARC, MIPS, and ARM stand out.
Pipelining and Parallelism in Computer Architecture
In computer architecture, pipelining and parallelism are methods used to speed up processing.
Pipelining refers to overlapping multiple instructions and processing them simultaneously. This couldn’t be possible without a pipeline-like structure. Imagine a factory assembly line, and you’ll understand how pipelining works instantly.
This method significantly increases the number of processed instructions and comes in two types:
- Instruction pipelines – Used for fixed-point multiplication, floating-point operations, and similar calculations
- Arithmetic pipelines – Used for reading consecutive instructions from memory
Parallelism entails using multiple processors or cores to process data simultaneously. Thanks to this collaborative approach, large amounts of data can be processed quickly.
Computer architecture employs two types of parallelism:
- Data parallelism – Executing the same task with multiple cores and different sets of data
- Task parallelism – Performing different tasks with multiple cores and the same or different data
Multicore processors are crucial for increasing the efficiency of parallelism as a method.
Memory Hierarchy and Cache
In computer system architecture, memory hierarchy is essential for minimizing the time it takes to access the memory units. It refers to separating memory units based on their response times.
The most common memory hierarchy goes as follows:
- Level 1: Processor registers
- Level 2: Cache memory
- Level 3: Primary memory
- Level 4: Secondary memory
The cache memory is a small and fast memory located close to a processor core. The CPU uses it to reduce the time and energy needed to access data from the primary memory.
Cache memory can be further broken into levels.
- L1 cache (the primary cache) – The fastest cache unit in the system
- L2 cache (the secondary cache) – The slower but more spacious option than Level 1
- L3 cache (a specialized cache) – The largest and the slowest cache in the system used to improve the performance of the first two levels
When it comes to determining where the data will be stored in the cache memory, three mapping techniques are employed:
- Direct mapping – Each memory block is mapped to one pre-determined cache location
- Associative mapping – Each memory block is mapped to a single location, but it can be any location
- Set associative mapping – Each memory block is mapped to a subset of locations
The performance of cache memory directly impacts the overall performance of a computing system. The following cache replacement policies are used to better process big data applications:
- FIFO (first in, first out) – The memory block first to enter the primary memory gets replaced first
- LRU (least recently used) – The least recently used page is the first to be discarded
- LFU (least frequently used) – The least frequently used element gets eliminated first
Input/Output (I/O) Systems
The input/output or I/O systems are designed to receive and send data to a computer. Without these processing systems, the computer wouldn’t be able to communicate with people and other systems and devices.
There are several types of I/O systems:
- Programmed I/O – The CPU directly issues a command to the I/O module and waits for it to be executed
- Interrupt-Driven I/O – The CPU moves on to other tasks after issuing a command to the I/O system
- Direct Memory Access (DMA) – The data is transferred between the memory and I/O devices without passing through the CPU
There are three standard I/O interfaces used for physically connecting hardware devices to a computer:
- Peripheral Component Interconnect (PCI)
- Small Computer System Interface (SATA)
- Universal Serial Bus (USB)
Power Consumption and Performance in Computer Architecture
Power consumption has become one of the most important considerations when designing modern computer architecture. Failing to consider this aspect leads to power dissipation. This, in turn, results in higher operating costs and a shorter lifespan for the machine.
For this reason, the following techniques for reducing power consumption are of utmost importance:
- Dynamic Voltage and Frequency Scaling (DVFS) – Scaling down the voltage based on the required performance
- Clock gating – Shutting off the clock signal when the circuit isn’t in use
- Power gating – Shutting off the power to circuit blocks when they’re not in use
Besides power consumption, performance is another crucial consideration in computer architecture. The performance is measured as follows:
- Instructions per second (IPS) – Measuring efficiency at any clock frequency
- Floating-point operations per second (FLOPS) – Measuring the numerical computing performance
- Benchmarks – Measuring how long the computer takes to complete a series of test programs
Emerging Trends in Computer Architecture
Computer architecture is continuously evolving to meet modern computing needs. Keep your eye out on these fascinating trends:
- Quantum computing (relying on the laws of quantum mechanics to tackle complex computing problems)
- Neuromorphic computing (modeling the computer architecture components on the human brain)
- Optical computing (using photons instead of electrons in digital computation for higher performance)
- 3D chip stacking (using 3D instead of 2D chips as they’re faster, take up less space, and require less power)
A One-Way Ticket to Computing Excellence
As you can tell, computer architecture directly affects your computer’s speed and performance. This launches it to the top of priorities when building this machine.
High-performance computers might’ve been nice-to-haves at some point. But in today’s digital age, they’ve undoubtedly become a need rather than a want.
In trying to keep up with this ever-changing landscape, computer architecture is continuously evolving. The end goal is to develop an ideal system in terms of speed, memory, and interconnection of components.
And judging by the current dominant trends in this field, that ideal system is right around the corner!
Related posts
Bring talented tech experts together, set them a challenge, and give them a deadline. Then, let them loose and watch the magic happen. That, in a nutshell, is what hackathons are all about. They’re proven to be among the most productive tech events when it comes to solving problems and accelerating innovation.
What Is a Hackathon?
Put simply, a hackathon is a short-term event – often lasting just a couple of days, or sometimes even only a matter of hours – where tech experts come together to solve a specific problem or come up with ideas based on a central theme or topic. As an example, teams might be tasked with discovering a new way to use AI in marketing or to create an app aimed at improving student life.
The term combines the words “hack” and “marathon,” due to how participants (hackers or programmers) are encouraged to work around-the-clock to create a prototype, proof-of-concept, or new solution. It’s similar to how marathon runners are encouraged to keep running, putting their skills and endurance to the test in a race to the finish line.
The Benefits of Hackathons
Hackathons provide value both for the companies that organize them and the people who take part. Companies can use them to quickly discover new ideas or overcome challenges, for example, while participants can enjoy testing their skills, innovating, networking, and working either alone or as part of a larger team.
Benefits for Companies and Sponsors
Many of the world’s biggest brands have come to rely on hackathons as ways to drive innovation and uncover new products, services, and opportunities. Meta, for example, the brand behind Facebook, has organized dozens of hackathons, some of which have led to the development of well-known Facebook features, like the “Like” button. Here’s how hackathons help companies:
- Accelerate Innovation: In fast-moving fields like technology, companies can’t always afford to spend months or years working on new products or features. They need to be able to solve problems quickly, and hackathons create the necessary conditions to deliver rapid success.
- Employee Development: Leading companies like Meta have started to use annual hackathons as a way to not only test their workforce’s skills but to give employees opportunities to push themselves and broaden their skill sets.
- Internal Networking: Hackathons also double up as networking events. They give employees from different teams, departments, or branches the chance to work with and learn from one another. This, in turn, can promote or reinforce team-oriented work cultures.
- Talent Spotting: Talents sometimes go unnoticed, but hackathons give your workforce’s hidden gems a chance to shine. They’re terrific opportunities to see who your best problem solvers and most creative thinkers at.
- Improving Reputation: Organizing regular hackathons helps set companies apart from their competitors, demonstrating their commitment to innovation and their willingness to embrace new ideas. If you want your brand to seem more forward-thinking and innovative, embracing hackathons is a great way to go about it.
Benefits for Participants
The hackers, developers, students, engineers, and other people who take part in hackathons arguably enjoy even bigger and better benefits than the businesses behind them. These events are often invaluable when it comes to upskilling, networking, and growing, both personally and professionally. Here are some of the main benefits for participants, explained:
- Learning and Improvement: Hackathons are golden opportunities for participants to gain knowledge and skills. They essentially force people to work together, sharing ideas, contributing to the collective, and pushing their own boundaries in pursuit of a common goal.
- Networking: While some hackathons are purely internal, others bring together different teams or groups of people from different schools, businesses, and places around the world. This can be wonderful for forming connections with like-minded individuals.
- Sense of Pride: Everyone feels a sense of pride after accomplishing a project or achieving a goal, but this often comes at the end of weeks or months of effort. With hackathons, participants can enjoy that same satisfying feeling after just a few hours or a couple of days of hard work.
- Testing Oneself: A hackathon is an amazing chance to put one’s skills to the test and see what one is truly capable of when given a set goal to aim for and a deadline to meet. Many participants are surprised to see how well they respond to these conditions.
- Boosting Skills: Hackathons provide the necessary conditions to hone and improve a range of core soft skills, such as teamwork, communication, problem-solving, organization, and punctuality. By the end, participants often emerge with more confidence in their abilities.
Hackathons at OPIT
The Open Institute of Technology (OPIT) understands the unique value of hackathons and has played its part in sponsoring these kinds of events in the past. OPIT was one of the sponsors behind ESCPHackathon 6, for example, which involved 120 students given AI-related tasks, with mentorship and guidance from senior professionals and developers from established brands along the way.
Marco Fediuc, one of the participants, summed up the mood in his comments:
“The hackathon was a truly rewarding experience. I had the pleasure of meeting OPIT classmates and staff and getting to know them better, the chance to collaborate with brilliant minds, and the opportunity to take part in an exciting and fun event.
“Participating turned out to be very useful because I had the chance to work in a fast-paced, competitive environment, and it taught me what it means to stay calm and perform under pressure… To prospective Computer Science students, should a similar opportunity arise, I can clearly say: Don’t underestimate yourselves!”
The new year will also see the arrival of OPIT Hackathon 2026, giving more students the chance to test their skills, broaden their networks, and enjoy the one-of-a-kind experiences that these events never fail to deliver. This event is scheduled to be held February 13-15, 2026, and is open to all OPIT Bachelor’s and Master’s students, along with recent graduates. Interested parties have until February 1 to register.
The Open Institute of Technology (OPIT) recently held its first-ever career fair to showcase its wide array of career education options and services. Representatives from numerous high-profile international companies were in attendance, and students enjoyed unprecedented opportunities to connect with business leaders, expand their professional networks, and pave the way for success in their future careers.
Here’s a look back at the event and how it ties into OPIT’s diverse scope of career services.
Introducing OPIT
For those who aren’t yet familiar, OPIT is an EU-accredited Higher Education Institution, offering online degrees in technological fields such as computer science, data science, artificial intelligence, cybersecurity, and digital business. Aimed at making high-level tech education accessible to all, OPIT has assembled a stellar team of tutors and experts to train the tech leaders of tomorrow.
The First OPIT Career Fair
OPIT’s first career fair was held on November 19 and 20. And as with OPIT’s lectures, it was an exclusively online event, which ensured that every attendee had equal access to key lectures and information. Interested potential students from all over the world were able to enjoy the same great experience, demonstrating a core principle that OPIT has championed from the very start – the principles of accessibility and the power of virtual learning.
More than a dozen leading international companies took part in the event, with the full guest list including representatives from:
- Deloitte
- Dylog Hitech
- EDIST Engineering Srl
- Tinexta Cyber
- Datapizza
- RWS Group
- WE GRELE FRANCE
- Avatar Investments
- Planet Farms
- Coolshop
- Hoist Finance Italia
- Gruppo Buffetti S.p.A
- Nesperia Group
- Fusion AI Labs
- Intesi Group
- Reply
- Mindsight Ventures
This was a fascinating mix of established enterprises and emerging players. Deloitte, for example, is one of the largest professional services networks in the world in terms of both revenue and number of employees. Mindsight Ventures, meanwhile, is a newer but rapidly emerging name in the fields of AI and business intelligence.
The Response
The first OPIT career fair was a success, with many students in attendance expressing their joy at being able to connect with such a strong lineup of prospective employers.
OPIT Founder and Director Riccardo Ocleppo had this to say:
“I often say internally that our connection with companies – through masterclasses, thesis and capstone projects, and career opportunities – is the ‘cherry on the cake’ of the OPIT experience!
“It’s also a core part of our mission: making higher education more practical, more connected, and more aligned with what happens in the real world.
“Our first Career Fair says a lot about our commitment to building an end-to-end learning and professional growth experience for our community of students.
“Thank you to the Student and Career Services team, and to Stefania Tabi for making this possible.”
Representatives from some of the companies that attended also shared positive impressions of the event. A representative from Nesperia Group, for example, said:
“Nesperia Group would like to thank OPIT for the warm welcome we received during the OPIT Career Day. We were pleased to be part of the event because we met many talented young professionals. Their curiosity and their professional attitude really impressed us, and it’s clear that OPIT is doing an excellent job supporting their growth. We really believe that events like these are important because they can create a strong connection between companies and future professionals.”
The Future
Given the enormous success of the first OPIT career fair, it’s highly likely that students will be able to enjoy more events like this in the years to come. OPIT is clearly committed to making the most of its strong business connections and remarkable network to provide opportunities for growth, development, and employment, bringing students and businesses together.
Future events will continue to allow students to connect with some of the biggest businesses in the world, along with emerging names in the most exciting and innovative tech fields. This should allow OPIT graduates to enter the working world with strong networks and firm connections already established. That, in turn, should make it easier for them to access and enjoy a wealth of beneficial professional opportunities.
Given that OPIT also has partnerships in place with numerous other leading organizations, like Hype, AWS, and Accenture, the number and variety of the companies potentially making appearances at career fairs in the future should no doubt increase dramatically.
Other Career Services at OPIT
The career fair is just one of many ways in which OPIT leverages its company connections and offers professional opportunities and career support to its students. Other key career services include:
- Career Coaching: Students are able to schedule one-on-one sessions with their own mentors and career advisors. They can receive feedback on their resumes, practice and improve their interview skills, or work on clear action plans that align with their exact professional goals.
- Resource Hub: The OPIT Resource Hub is jam-packed with helpful guides and other resources to help students plan out and take smart steps in their professional endeavors. With detailed insights and practical tips, it can help tech graduates get off to the best possible start.
- Career Events: The career fair is only one of several planned career-related events organized by OPIT. Other events are planned to give students the chance to learn from and engage with industry experts and leading tech firms, with workshops, career skills days, and more.
- Internships: OPIT continues to support students after graduation, offering internship opportunities with leading tech firms around the world. These internships are invaluable for gaining experience and forging connections, setting graduates up for future success.
- Peer Mentoring: OPIT also offers a peer mentoring program in which existing students can team up with OPIT alumni to enjoy the benefits of their experience and unique insights.
These services – combined with the recent career day – clearly demonstrate OPIT’s commitment to not merely educating the tech leaders of the future, but also to supporting their personal and professional development beyond the field of education, making it easier for them to enter the working world with strong connections and unrivaled opportunities.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: