Large portions of modern life revolve around computers. Many of us start the day by booting a PC and we spend the rest of our time carrying miniaturized computer devices around – our smartphones.

Such devices rely on complex software environments and programs to meet our personal and professional needs. And computer science deals with precisely that.

The job of a computer scientist revolves around software, including theoretical advances, software model design, and the development of new apps. It’s a profession that requires profound knowledge of algorithms, AI, cybersecurity, mathematical analysis, databases, and much more.

In essence, computer science is in the background of everything related to modern digital technologies. Computer scientists solve problems and advance the capabilities of technologies that nearly all industries utilize.

In fact, this scientific field is so broad that explaining what is computer science requires more than a mere definition. That’s why this article will go into considerable detail on the subject to flesh out the meaning behind one of the most important professions of our time.

History of Computer Science

The early history of computer science is a fascinating subject. On the one hand, the mechanics and mathematics that would form the core disciplines of computer science far predate the digital age. On the other hand, the modern iteration of computer science didn’t start until about two decades after the first digital computer came into being.

When examining the roots of computer science, we can go as far back as the antiquity era. Mechanical calculation tools and advanced mathematical algorithms date back millennia. However, those roots are too loosely connected to computer science.

The first people who started exploring the foundations of what is computer science today were Wilhelm Schickard and Gottfried Leibniz in early and late 17th century, respectively.

Schickard is responsible for the design of the world’s first genuine mechanical calculator. Leibniz is the inventor of a calculator that worked in the binary system, the universally known “1-0” number system that paved the way for the digital age.

Despite the early advances in the mentioned fields, it would be another 150 years after Leibniz before mechanical and automated computing machines saw industrial production. Yet, those machines weren’t used for any other purpose apart from calculations.

Computers became more powerful only in the 20th century. Like many other technologies, this branch saw rapid development during the last one hundred years, with IBM creating the first computing lab in 1945.

Yet, while plenty of research was happening, computer science wasn’t established as an independent discipline. That would take place only during the 1960s.

Early Developments

As mentioned, the invention of the binary system could be considered a root of computer science. This isn’t only due to the revolutionary mathematical model – it’s also because the binary number system lends itself particularly well to electronics.

The rise of electrical engineering moved forward inventions like the electrical circuit, the transistor, and powerful data storage solutions. This progress gave birth to the earliest electrical computers, which mostly found use in data processing.

It didn’t take long for massive companies to start using the early computers for information storage. Naturally, this use made further development of the technology necessary. The 1930s saw crucial milestones in computer theory, including the groundbreaking computational model by Alan Turing.

Not long after Turing, John von Neumann created a model of a computer that can store programs. By the 1950s, computers were in use in complex calculations and data processing on a large scale.

The rising demand made the binary machine language too unreliable and impractical. The successor, the so-called assembly language, soon proved just as lacking. By the end of the decade, the world saw the first program languages, which soon became the famed FORTRAN (Formula Translation) and COBOL (Common Business Oriented Language).

The following decade, it became obvious that computer science is a field of study in itself, rather than a subset of mathematical or physical disciplines.

Evolution of Computer Science Over Time

As technology kept progressing, computer science needed to keep up. The first computer operating systems came about in the 1960s, while the next two decades brought about an intense expansion in graphics and affordable hardware.

The combination of these factors (OS, accessible hardware, and graphical development) led to advanced user interfaces, championed by industry giants like Apple and Microsoft.

In parallel to these discoveries, computer networks were advancing, too. The birth of the internet added even more moving parts to the already vast field of computer science, including the first search engines that utilized advanced algorithms, albeit not at the same level as today’s engines.

Furthermore, greater computational capabilities created a need for better storage systems. This included larger databases and faster processing.

Today, computer science explores all of the mentioned facets of computer technology, alongside other fields like robotics and artificial intelligence.

Key Areas of Study in Computer Science

As you’ve undoubtedly noticed, computer science grew in scope with the development of computational technologies. That’s why it’s no surprise that computer science today encompasses many areas that deal with every aspect of the technology currently imaginable.

To answer the question of what is computer science, we’ll list some of the key areas of this discipline:

  1. Algorithms and data structures
  2. Programming languages and compilers
  3. Computer architecture and organization
  4. Operating systems
  5. Networking and communication
  6. Databases and information retrieval
  7. Artificial intelligence and machine learning
  8. Human-computer interaction
  9. Software engineering
  10. Computer graphics and visualization

As is apparent, these areas correspond with the historical advances in computational technology. We’ve talked about how algorithms predate the modern age by quite a lot. These mathematical achievements brought about early machine languages, which turned into programming languages.

The progress in data storage and the increased scope of the machines resulted in a need for more robust architecture, which necessitated the creation of operating systems. As computer systems started communicating with each other, better networking became vital.

Work on information retrieval and database management resulted from both individual computer use and a greater reliance on networking. Naturally, it didn’t take long for scientists to start considering how the machines could do even more work individually, which marked the starting point for modern AI.

Throughout its history, computer science developed new disciplines out of the need to solve existing problems and come up with novel solutions. When we consider all that progress, it’s clear that the practical applications of computer science grew alongside the technology itself.

Applications of Computer Science

Computer science is applied in numerous fields and industries. Currently, computer science contributes to the world through innovation and technological development. And as computer systems become more advanced, they are capable of resolving complex issues within some of the most important industries of our age.

Technology and Innovation

In terms of technology and innovation, computer science finds application in the fields of graphics, visualization, sound and video processing, mathematical modeling, analytics, and more.

Graphical rendering helps us visualize concepts that would otherwise be hard to grasp. Technologies like VR and AR expand the way we communicate, while 3D models flesh out future projects in staggering detail.

Sound and video processing capabilities of modern systems continue to revolutionize telecommunications. And, of course, mathematical modeling and analytics expand the possibilities of various systems, from physics to finance.

Problem-Solving in Various Industries

When it comes to the application of computer science in particular industries, this field of study contributes to better quality of life by tackling the most challenging problems in key areas:

  • Healthcare
  • Finance
  • Education
  • Entertainment
  • Transportation

Granted, these aren’t the only areas where computer science helps overcome issues and previous limitations.

In healthcare, computer systems can produce and analyze medical images, assisting medical experts in diagnosis and patient treatment. Furthermore, branches of computer science like psychoinformatics use digital technologies for a better understanding of psychological traits.

In terms of finance, data gathering and processing is critical for massive financial systems. Additionally, automation and networking make transactions easier and safer.

When it comes to education and entertainment, computer science offers solutions in terms of more comprehensible presentation, as well as more immersive experiences. Many schools worldwide use digital teaching tools today, helping students grasp complex subjects with fewer obstacles compared to traditional methods.

Careers in Computer Science

As should be expected, computer science provides numerous job opportunities in the modern market. Some of the most prominent roles in computer science include systems analysts, programmers, computer research scientists, database administrators, software developers, support specialists, cybersecurity specialists, and network administrators.

The mentioned roles require a level of proficiency in the appropriate field of computer science. Luckily, computer science skills are easier to learn today – mostly thanks to the development of computer science.

An online BSc or MSc in computer science can be an excellent way to get prepared for a career in the most sought-after profession in the modern world.

On that note, not all computer science jobs are projected to grow at the same rate by the end of this decade. Profiles that will likely stay in high demand include:

  • Security Analyst
  • Software Developer
  • Research Scientist
  • Database Administrator

Start Learning About Computer Science

Computer science represents a fascinating field that grows with the technology and, in some sense, fuels its own development. This vital branch of science has roots in ancient mathematical principles as well as the latest advances like machine learning and AI.

There are few fields worth exploring more today than computer science. Besides understanding our world better, learning more about computer science can open up incredible career paths and provide an opportunity to contribute to resolving some of the burning issues of our time.

Related posts

Agenda Digitale: The Five Pillars of the Cloud According to NIST – A Compass for Businesses and Public Administrations
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 26, 2025 7 min read

Source:


By Lokesh Vij, Professor of Cloud Computing Infrastructure, Cloud Development, Cloud Computing Automation and Ops and Cloud Data Stacks at OPIT – Open Institute of Technology

NIST identifies five key characteristics of cloud computing: on-demand self-service, network access, resource pooling, elasticity, and metered service. These pillars explain the success of the global cloud market of 912 billion in 2025

In less than twenty years, the cloud has gone from a curiosity to an indispensable infrastructure. According to Precedence Research, the global market will reach 912 billion dollars in 2025 and will exceed 5.1 trillion in 2034. In Europe, the expected spending for 2025 will be almost 202 billion dollars. At the base of this success are five characteristics, identified by the NIST (National Institute of Standards and Technology): on-demand self-service, network access, shared resource pool, elasticity and measured service.

Understanding them means understanding why the cloud is the engine of digital transformation.

On-demand self-service: instant provisioning

The journey through the five pillars starts with the ability to put IT in the hands of users.

Without instant provisioning, the other benefits of the cloud remain potential. Users can turn resources on and off with a click or via API, without tickets or waiting. Provisioning a VM, database, or Kubernetes cluster takes seconds, not weeks, reducing time to market and encouraging continuous experimentation. A DevOps team that releases microservices multiple times a day or a fintech that tests dozens of credit-scoring models in parallel benefit from this immediacy. In OPIT labs, students create complete Kubernetes environments in two minutes, run load tests, and tear them down as soon as they’re done, paying only for the actual minutes.

Similarly, a biomedical research group can temporarily allocate hundreds of GPUs to train a deep-learning model and release them immediately afterwards, without tying up capital in hardware that will age rapidly. This flexibility allows the user to adapt resources to their needs in real time. There are no hard and fast constraints: you can activate a single machine and deactivate it when it is no longer needed, or start dozens of extra instances for a limited time and then release them. You only pay for what you actually use, without waste.

Wide network access: applications that follow the user everywhere

Once access to resources is made instantaneous, it is necessary to ensure that these resources are accessible from any location and device, maintaining a uniform user experience. The cloud lives on the network and guarantees ubiquity and independence from the device.

A web app based on HTTP/S can be used from a laptop, tablet or smartphone, without the user knowing where the containers are running. Geographic transparency allows for multi-channel strategies: you start a purchase on your phone and complete it on your desktop without interruptions. For the PA, this means providing digital identities everywhere, for the private sector, offering 24/7 customer service.

Broad access moves security from the physical perimeter to the digital identity and introduces zero-trust architecture, where every request is authenticated and authorized regardless of the user’s location.

All you need is a network connection to use the resources: from the office, from home or on the move, from computers and mobile devices. Access is independent of the platform used and occurs via standard web protocols and interfaces, ensuring interoperability.

Shared Resource Pools: The Economy of Scale of Multi-Tenancy

Ubiquitous access would be prohibitive without a sustainable economic model. This is where infrastructure sharing comes in.

The cloud provider’s infrastructure aggregates and shares computational resources among multiple users according to a multi-tenant model. The economies of scale of hyperscale data centers reduce costs and emissions, putting cutting-edge technologies within the reach of startups and SMBs.

Pooling centralizes patching, security, and capacity planning, freeing IT teams from repetitive tasks and reducing the company’s carbon footprint. Providers reinvest energy savings in next-generation hardware and immersion cooling research programs, amplifying the collective benefit.

Rapid Elasticity: Scaling at the Speed ​​of Business

Sharing resources is only effective if their allocation follows business demand in real time. With elasticity, the infrastructure expands or reduces resources in minutes following the load. The system behaves like a rubber band: if more power or more instances are needed to deal with a traffic spike, it automatically scales in real time; when demand drops, the additional resources are deactivated just as quickly.

This flexibility seems to offer unlimited resources. In practice, a company no longer has to buy excess servers to cover peaks in demand (which would remain unused during periods of low activity), but can obtain additional capacity from the cloud only when needed. The economic advantage is considerable: large initial investments are avoided and only the capacity actually used during peak periods is paid for.

In the OPIT cloud automation lab, students simulate a streaming platform that creates new Kubernetes pods as viewers increase and deletes them when the audience drops: a concrete example of balancing user experience and cost control. The effect is twofold: the user does not suffer slowdowns and the company avoids tying up capital in underutilized servers.

Metered Service: Transparency and Cost Governance

The dynamic scale generated by elasticity requires precise visibility into consumption and expenses : without measurement there is no governance. Metering makes every second of CPU, every gigabyte and every API call visible. Every consumption parameter is tracked and made available in transparent reports.

This data enables pay-per-use pricing , i.e. charges proportional to actual usage. For the customer, this translates into variable costs: you only pay for the resources actually consumed. Transparency helps you plan your budget: thanks to real-time data, it is easier to optimize expenses, for example by turning off unused resources. This eliminates unnecessary fixed costs, encouraging efficient use of resources.

The systemic value of the five pillars

When the five pillars work together, the effect is multiplier . Self-service and elasticity enable rapid response to workload changes, increasing or decreasing resources in real time, and fuel continuous experimentation; ubiquitous access and pooling provide global scalability; measurement ensures economic and environmental sustainability.

It is no surprise that the Italian market will grow from $12.4 billion in 2025 to $31.7 billion in 2030 with a CAGR of 20.6%. Manufacturers and retailers are migrating mission-critical loads to cloud-native platforms , gaining real-time data insights and reducing time to value .

From the laboratory to the business strategy

From theory to practice: the NIST pillars become a compass for the digital transformation of companies and Public Administration. In the classroom, we start with concrete exercises – such as the stress test of a video platform – to demonstrate the real impact of the five pillars on performance, costs and environmental KPIs.

The same approach can guide CIOs and innovators: if processes, governance and culture embody self-service, ubiquity, pooling, elasticity and measurement, the organization is ready to capture the full value of the cloud. Otherwise, it is necessary to recalibrate the strategy by investing in training, pilot projects and partnerships with providers. The NIST pillars thus confirm themselves not only as a classification model, but as the toolbox with which to build data-driven and sustainable enterprises.

Read the full article below (in Italian):

Read the article
ChatGPT Action Figures & Responsible Artificial Intelligence
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 23, 2025 6 min read

You’ve probably seen two of the most recent popular social media trends. The first is creating and posting your personalized action figure version of yourself, complete with personalized accessories, from a yoga mat to your favorite musical instrument. There is also the Studio Ghibli trend, which creates an image of you in the style of a character from one of the animation studio’s popular films.

Both of these are possible thanks to OpenAI’s GPT-4o-powered image generator. But what are you risking when you upload a picture to generate this kind of content? More than you might imagine, according to Tom Vazdar, chair of cybersecurity at the Open Institute of Technology (OPIT), in a recent interview with Wired. Let’s take a closer look at the risks and how this issue ties into the issue of responsible artificial intelligence.

Uploading Your Image

To get a personalized image of yourself back from ChatGPT, you need to upload an actual photo, or potentially multiple images, and tell ChatGPT what you want. But in addition to using your image to generate content for you, OpenAI could also be using your willingly submitted image to help train its AI model. Vazdar, who is also CEO and AI & Cybersecurity Strategist at Riskoria and a board member for the Croatian AI Association, says that this kind of content is “a gold mine for training generative models,” but you have limited power over how that image is integrated into their training strategy.

Plus, you are uploading much more than just an image of yourself. Vazdar reminds us that we are handing over “an entire bundle of metadata.” This includes the EXIF data attached to the image, such as exactly when and where the photo was taken. And your photo may have more content in it than you imagine, with the background – including people, landmarks, and objects – also able to be tied to that time and place.

In addition to this, OpenAI also collects data about the device that you are using to engage with the platform, and, according to Vazdar, “There’s also behavioral data, such as what you typed, what kind of image you asked for, how you interacted with the interface and the frequency of those actions.”

After all that, OpenAI knows a lot about you, and soon, so could their AI model, because it is studying you.

How OpenAI Uses Your Data

OpenAI claims that they did not orchestrate these social media trends simply to get training data for their AI, and that’s almost certainly true. But they also aren’t denying that access to that freely uploaded data is a bonus. As Vazdar points out, “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

OpenAI isn’t the only company using your data to train its AI. Meta recently updated its privacy policy to allow the company to use your personal information on Meta-related services, such as Facebook, Instagram, and WhatsApp, to train its AI. While it is possible to opt-out, Meta isn’t advertising that fact or making it easy, which means that most users are sharing their data by default.

You can also control what happens with your data when using ChatGPT. Again, while not well publicized, you can use ChatGPT’s self-service tools to access, export, and delete your personal information, and opt out of having your content used to improve OpenAI’s model. Nevertheless, even if you choose these options, it is still worth it to strip data like location and time from images before uploading them and to consider the privacy of any images, including people and objects in the background, before sharing.

Are Data Protection Laws Keeping Up?

OpenAI and Meta need to provide these kinds of opt-outs due to data protection laws, such as GDPR in the EU and the UK. GDPR gives you the right to access or delete your data, and the use of biometric data requires your explicit consent. However, your photo only becomes biometric data when it is processed using a specific technical measure that allows for the unique identification of an individual.

But just because ChatGPT is not using this technology, doesn’t mean that ChatGPT can’t learn a lot about you from your images.

AI and Ethics Concerns

But you might wonder, “Isn’t it a good thing that AI is being trained using a diverse range of photos?” After all, there have been widespread reports in the past of AI struggling to recognize black faces because they have been trained mostly on white faces. Similarly, there have been reports of bias within AI due to the information it receives. Doesn’t sharing from a wide range of users help combat that? Yes, but there is so much more that could be done with that data without your knowledge or consent.

One of the biggest risks is that the data can be manipulated for marketing purposes, not just to get you to buy products, but also potentially to manipulate behavior. Take, for instance, the Cambridge Analytica scandal, which saw AI used to manipulate voters and the proliferation of deepfakes sharing false news.

Vazdar believes that AI should be used to promote human freedom and autonomy, not threaten it. It should be something that benefits humanity in the broadest possible sense, and not just those with the power to develop and profit from AI.

Responsible Artificial Intelligence

OPIT’s Master’s in Responsible AI combines technical expertise with a focus on the ethical implications of AI, diving into questions such as this one. Focusing on real-world applications, the course considers sustainable AI, environmental impact, ethical considerations, and social responsibility.

Completed over three or four 13-week terms, it starts with a foundation in technical artificial intelligence and then moves on to advanced AI applications. Students finish with a Capstone project, which sees them apply what they have learned to real-world problems.

Read the article