The journey towards building ethical AI is challenging, yet it also presents an opportunity to shape a future where technology serves as a force for good

By Riccardo Ocleppo, March 14th 2024

Source here:eCampus News


In the exponentially-evolving realm of artificial intelligence (AI), concerns surrounding AI bias have risen to the forefront, demanding a collective effort towards fostering ethical AI practices. This necessitates understanding the multifaceted causes and potential ramifications of AI bias, exploring actionable solutions, and acknowledging the key role of higher education institutions in this endeavor.

Unveiling the roots of AI bias

AI bias is the inherent, often systemic, unfairness embedded within AI algorithms. These biases can stem from various sources, with data used to train AI models often acting as the primary culprit. If this data reflects inequalities or societal prejudices, it can unintentionally translate into skewed algorithms perpetuating those biases. But bias can also work the other way around: take the recent case of bias by Google Gemini, where the generative AI created by Google, biased by the necessity of more inclusiveness, actually generated responses and images that have nothing to do with the reality it was prompted to depict.

Furthermore, the complexity of AI models, frequently characterized by intricate algorithms and opaque decision-making processes, compounds the issue. The very nature of these models makes pinpointing and rectifying embedded biases a significant challenge.

Mitigating the impact: Actionable data practices

Actionable data practices are essential to address these complexities. Ensuring diversity and representativeness within training datasets is a crucial first step. This involves actively seeking data encompassing a broad spectrum of demographics, cultures, and perspectives, ensuring the AI model doesn’t simply replicate existing biases.

In conjunction with diversifying data, rigorous testing across different demographic groups is vital. Evaluating the AI model’s performance across various scenarios unveils potential biases that might otherwise remain hidden. Additionally, fostering transparency in AI algorithms and their decision-making processes is crucial. By allowing for scrutiny and accountability, transparency empowers stakeholders to assess whether the AI functions unbiasedly.

The ongoing journey of building ethical AI

Developing ethical AI is not a one-time fix; it requires continuous vigilance and adaptation. This ongoing journey necessitates several key steps:

  • Establishing ethical guidelines: Organizations must clearly define ethical standards for AI development and use, reflecting fundamental values such as fairness, accountability, and transparency. These guidelines serve as a roadmap, ensuring AI projects align with ethical principles.
  • Creating multidisciplinary teams: Incorporating diverse perspectives into AI development is crucial. Teams of technologists, ethicists, sociologists, and individuals representing potentially impacted communities can anticipate and mitigate biases through broader perspectives.
  • Fostering an ethical culture: Beyond establishing guidelines and assembling diverse teams, cultivating an organizational culture prioritizes ethical considerations in all AI projects is essential. Embedding ethical principles into an organization’s core values and everyday practices ensures ethical considerations are woven into the very fabric of AI development.

The consequences of unchecked bias

Ignoring the potential pitfalls of AI bias can lead to unintended and often profound consequences, impacting various aspects of our lives. From reinforcing social inequalities to eroding trust in AI systems, unchecked bias can foster widespread skepticism and resistance toward technological advancements.

Moreover, biased AI can inadvertently influence decision-making in critical areas such as healthcare, employment, and law enforcement. Imagine biased algorithms used in loan applications unfairly disadvantaging certain demographics or in facial recognition software incorrectly identifying individuals, potentially leading to unjust detentions. These are just a few examples of how unchecked AI bias can perpetuate inequalities and create disparities.

The role of higher education in fostering change

Higher education institutions have a pivotal role to play in addressing AI bias and fostering the development of ethical AI practices:

  • Integrating ethics into curricula: By integrating ethics modules into AI and computer science curricula, universities can equip future generations of technologists with the necessary tools and frameworks to identify, understand, and combat AI bias. This empowers them to develop and deploy AI responsibly, ensuring their creations are fair and inclusive.
  • Leading by example: Beyond educating future generations, universities can also lead by example through their own research initiatives. Research institutions are uniquely positioned to delve into the complex challenges of AI bias, developing innovative solutions for bias detection and mitigation. Their research can inform and guide broader efforts towards building ethical AI.
  • Fostering interdisciplinary collaboration: The multifaceted nature of AI bias necessitates a collaborative approach. Universities can convene experts from various fields, including computer scientists, ethicists, legal scholars, and social scientists, to tackle the challenges of AI bias from diverse perspectives. This collaborative spirit can foster innovative and comprehensive solutions.
  • Facilitating public discourse: Universities, as centers of knowledge and critical thinking, can serve as forums for public discourse on ethical AI. They can facilitate conversations between technologists, policymakers, and the broader community through dialogues, workshops, and conferences. This public engagement is crucial for raising awareness, fostering understanding, and promoting responsible development and deployment of AI.

Several universities and higher education institutions, wallowing in the above principles, have created technical degrees in artificial intelligence shaping the artificial intelligence professionals of tomorrow by combining advanced technical skills in AI areas such as machine learning, computer vision, and natural language processing while developing in each one of them ethical and human-centered implications.

Also, we are seeing prominent universities throughout the globe (more notably, Yale and Oxford) creating research departments on AI and ethics.

Conclusion

The journey towards building ethical AI is challenging, yet it also presents an opportunity to shape a future where technology serves as a force for good. By acknowledging the complex causes of AI bias, adopting actionable data practices, and committing to the ongoing effort of building ethical AI, we can mitigate the unintended consequences of biased algorithms. With their rich reservoir of knowledge and expertise, higher education institutions are at the forefront of this vital endeavor, paving the way for a more just and equitable digital age.

Related posts

Agenda Digitale: Regenerative Business – The Future of Business Is Net-Positive
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 8, 2025 5 min read

Source:


The net-positive model transcends traditional sustainability by aiming to generate more value than is consumed. Blockchain, AI, and IoT enable scalable circular models. Case studies demonstrate how profitability and positive impact combine to regenerate business and the environment.

By Francesco Derchi, Professor and Area Chair in Digital Business @ OPIT – Open Institute of Technology

In recent years, the word ” sustainability ” has become a firm fixture in the corporate lexicon. However, simply “doing no harm” is no longer enough: the climate crisis , social inequalities , and the erosion of natural resources require a change of pace. This is where the net-positive paradigm comes in , a model that isn’t content to simply reduce negative impacts, but aims to generate more social and environmental value than is consumed.

This isn’t about philanthropy, nor is it about reputational makeovers: net-positive is a strategic approach that intertwines economics, technology, and corporate culture. Within this framework, digitalization becomes an essential lever, capable of enabling regenerative models through circular platforms and exponential technologies.

Blockchain, AI, and IoT: The Technological Triad of Regeneration

Blockchain, Artificial Intelligence, and the Internet of Things represent the technological triad that makes this paradigm shift possible. Each addresses a critical point in regeneration.

Blockchain guarantees the traceability of material flows and product life cycles, allowing a regenerated dress or a bottle collected at sea to tell their story in a transparent and verifiable way.

Artificial Intelligence optimizes recovery and redistribution chains, predicting supply and demand, reducing waste and improving the efficiency of circular processes .

Finally, IoT enables real-time monitoring, from sensors installed at recycling plants to sharing mobility platforms, returning granular data for quick, informed decisions.

These integrated technologies allow us to move beyond linear vision and enable systems in which value is continuously regenerated.

New business models: from product-as-a-service to incentive tokens

Digital regeneration is n’t limited to the technological dimension; it’s redefining business models. More and more companies are adopting product-as-a-service approaches , transforming goods into services: from technical clothing rentals to pay-per-use for industrial machinery. This approach reduces resource consumption and encourages modular design, designed for reuse.

At the same time, circular marketplaces create ecosystems where materials, components, and products find new life. No longer waste, but input for other production processes. The logic of scarcity is overturned in an economy of regenerated abundance.

To complete the picture, incentive tokens — digital tools that reward virtuous behavior, from collecting plastic from the sea to reusing used clothing — activate global communities and catalyze private capital for regeneration.

Measuring Impact: Integrated Metrics for Net-Positiveness

One of the main obstacles to the widespread adoption of net-positive models is the difficulty of measuring their impact. Traditional profit-focused accounting systems are not enough. They need to be combined with integrated metrics that combine ESG and ROI, such as impact-weighted accounting or innovative indicators like lifetime carbon savings.

In this way, companies can validate the scalability of their models and attract investors who are increasingly attentive to financial returns that go hand in hand with social and environmental returns.

Case studies: RePlanet Energy, RIFO, and Ogyre

Concrete examples demonstrate how the combination of circular platforms and exponential technologies can generate real value. RePlanet Energy has defined its Massive Transformative Purpose as “Enabling Regeneration” and is now providing sustainable energy to Nigerian schools and hospitals, thanks in part to transparent blockchain-based supply chains and the active contribution of employees. RIFO, a Tuscan circular fashion brand, regenerates textile waste into new clothing, supporting local artisans and promoting workplace inclusion, with transparency in the production process as a distinctive feature and driver of loyalty. Ogyre incentivizes fishermen to collect plastic during their fishing trips; the recovered material is digitally tracked and transformed into new products, while the global community participates through tokens and environmental compensation programs.

These cases demonstrate how regeneration and profitability are not contradictory, but can actually feed off each other, strengthening the competitiveness of businesses.

From Net Zero to Net Positive: The Role of Massive Transformative Purpose

The crucial point lies in the distinction between sustainability and regeneration. The former aims for net zero, that is, reducing the impact until it is completely neutralized. The latter goes further, aiming for a net positive, capable of giving back more than it consumes.

This shift in perspective requires a strong Massive Transformative Purpose: an inspiring and shared goal that guides strategic choices, preventing technology from becoming a sterile end. Without this level of intentionality, even the most advanced tools risk turning into gadgets with no impact.

Regenerating business also means regenerating skills to train a new generation of professionals capable not only of using technologies but also of directing them towards regenerative business models. From this perspective, training becomes the first step in a transformation that is simultaneously cultural, economic, and social.

The Regenerative Future: Technology, Skills, and Shared Value

Digital regeneration is not an abstract concept, but a concrete practice already being tested by companies in Europe and around the world. It’s an opportunity for businesses to redefine their role, moving from mere economic operators to drivers of net-positive value for society and the environment.

The combination of blockchainAI, and IoT with circular product-as-a-service models, marketplaces, and incentive tokens can enable scalable and sustainable regenerative ecosystems. The future of business isn’t just measured in terms of margins, but in the ability to leave the world better than we found it.

Read the full article below (in Italian):

Read the article
Raconteur: AI on your terms – meet the enterprise-ready AI operating model
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 18, 2025 5 min read

Source:

  • Raconteur, published on November 06th, 2025

What is the AI technology operating model – and why does it matter? A well-designed AI operating model provides the structure, governance and cultural alignment needed to turn pilot projects into enterprise-wide transformation

By Duncan Jefferies

Many firms have conducted successful Artificial Intelligence (AI) pilot projects, but scaling them across departments and workflows remains a challenge. Inference costs, data silos, talent gaps and poor alignment with business strategy are just some of the issues that leave organisations trapped in pilot purgatory. This inability to scale successful experiments means AI’s potential for improving enterprise efficiency, decision-making and innovation isn’t fully realised. So what’s the solution?

Although it’s not a magic bullet, an AI operating model is really the foundation for scaling pilot projects up to enterprise-wide deployments. Essentially it’s a structured framework that defines how the organisation develops, deploys and governs AI. By bringing together infrastructure, data, people, and governance in a flexible and secure way, it ensures that AI delivers value at scale while remaining ethical and compliant.

“A successful AI proof-of-concept is like building a single race car that can go fast,” says Professor Yu Xiong, chair of business analytics at the UK-based Surrey Business School. “An efficient AI technology operations model, however, is the entire system – the processes, tools, and team structures – for continuously manufacturing, maintaining, and safely operating an entire fleet of cars.”

But while the importance of this framework is clear, how should enterprises establish and embed it?

“It begins with a clear strategy that defines objectives, desired outcomes, and measurable success criteria, such as model performance, bias detection, and regulatory compliance metrics,” says Professor Azadeh Haratiannezhadi, co-founder of generative AI company Taktify and professor of generative AI in cybersecurity at OPIT – the Open Institute of Technology.

Platforms, tools and MLOps pipelines that enable models to be deployed, monitored and scaled in a safe and efficient way are also essential in practical terms.

“Tools and infrastructure must also be selected with transparency, cost, and governance in mind,” says Efrain Ruh, continental chief technology officer for Europe at Digitate. “Crucially, organisations need to continuously monitor the evolving AI landscape and adapt their models to new capabilities and market offerings.”

An open approach

The most effective AI operating models are also founded on openness, interoperability and modularity. Open source platforms and tools provide greater control over data, deployment environments and costs, for example. These characteristics can help enterprises to avoid vendor lock-in, successfully align AI to business culture and values, and embed it safely into cross-department workflows.

“Modularity and platformisation…avoids building isolated ‘silos’ for each project,” explains professor Xiong. “Instead, it provides a shared, reusable ‘AI platform’ that integrates toolchains for data preparation, model training, deployment, monitoring, and retraining. This drastically improves efficiency and reduces the cost of redundant work.”

A strong data strategy is equally vital for ensuring high-quality performance and reducing bias. Ideally, the AI operating model should be cloud and LLM agnostic too.

“This allows organisations to coordinate and orchestrate AI agents from various sources, whether that’s internal or 3rd party,” says Babak Hodjat, global chief technology officer of AI at Cognizant. “The interoperability also means businesses can adopt an agile iterative process for AI projects that is guided by measuring efficiency, productivity, and quality gains, while guaranteeing trust and safety are built into all elements of design and implementation.”

A robust AI operating model should feature clear objectives for compliance, security and data privacy, as well as accountability structures. Richard Corbridge, chief information officer of Segro, advises organisations to: “Start small with well-scoped pilots that solve real pain points, then bake in repeatable patterns, data contracts, test harnesses, explainability checks and rollback plans, so learning can be scaled without multiplying risk. If you don’t codify how models are approved, deployed, monitored and retired, you won’t get past pilot purgatory.”

Of course, technology alone can’t drive successful AI adoption at scale: the right skills and culture are also essential for embedding AI across the enterprise.

“Multidisciplinary teams that combine technical expertise in AI, security, and governance with deep business knowledge create a foundation for sustainable adoption,” says Professor Haratiannezhadi. “Ongoing training ensures staff acquire advanced AI skills while understanding associated risks and responsibilities.”

Ultimately, an AI operating model is the playbook that enables an enterprise to use AI responsibly and effectively at scale. By drawing together governance, technological infrastructure, cultural change and open collaboration, it supports the shift from isolated experiments to the kind of sustainable AI capability that can drive competitive advantage.

In other words, it’s the foundation for turning ambition into reality, and finally escaping pilot purgatory for good.

 

Read the full article below:

Read the article