Recommender systems are AI-based algorithms that use different information to recommend products to customers. We can say that recommender systems are a subtype of machine learning because the algorithms “learn from their past,” i.e., use past data to predict the future.
Today, we’re exposed to vast amounts of information. The internet is overflowing with data on virtually any topic. Recommender systems are like filters that analyze the data and offer the users (you) only relevant information. Since what’s relevant to you may not interest someone else, these systems use unique criteria to provide the best results to everyone.
In this article, we’ll dig deep into recommender systems and discuss their types, applications, and challenges.
Types of Recommender Systems
Learning more about the types of recommender systems will help you understand their purpose.
Content-Based Filtering
With content-based filtering, it’s all about the features of a particular item. Algorithms pick up on specific characteristics to recommend a similar item to the user (you). Of course, the starting point is your previous actions and/or feedback.
Sounds too abstract, doesn’t it? Let’s explain it through a real-life example: movies. Suppose you’ve subscribed to a streaming platform and watched The Notebook (a romance/drama starring Ryan Gosling and Rachel McAdams). Algorithms will sniff around to investigate this movie’s properties:
- Genre
- Actors
- Reviews
- Title
Then, algorithms will suggest what to watch next and display movies with similar features. For example, you may find A Walk to Remember on your list (because it belongs to the same genre and is based on a book by the same author). But you may also see La La Land on the list (although it’s not the same genre and isn’t based on a book, it stars Ryan Gosling).
Some of the advantages of this type are:
- It only needs data from a specific user, not a whole group.
- It’s ideal for those who have interests that don’t fall into the mainstream category.
A potential drawback is:
- It recommends only similar items, so users can’t really expand their interests.
Collaborative Filtering
In this case, users’ preferences and past behaviors “collaborate” with one another, and algorithms use these similarities to recommend items. We have two types of collaborative filtering: user-user and item-item.
User-User Collaborative Filtering
The main idea behind this type of recommender system is that people with similar interests and past purchases are likely to make similar selections in the future. Unlike the previous type, the focus here isn’t just on only one user but a whole group.
Collaborative filtering is popular in e-commerce, with a famous example being Amazon. It analyzes the customers’ profiles and reviews and offers recommended products using that data.
The main advantages of user-user collaborative filtering are:
- It allows users to explore new interests and stay in the loop with trends.
- It doesn’t need information about the specific characteristics of an item.
The biggest disadvantage is:
- It can be overwhelmed by data volume and offer poor results.
Item-Item Collaborative Filtering
If you were ever wondering how Amazon knows you want a mint green protective case for the phone you just ordered, the answer is item-item collaborative filtering. Amazon invented this type of filtering back in 1998. With it, the e-commerce platform can make quick product suggestions and let users purchase them with ease. Here, the focus isn’t on similarities between users but between products.
Some of the advantages of item-item collaborative filtering are:
- It doesn’t require information about the user.
- It encourages users to purchase more products.
The main drawback is:
- It can suffer from a decrease in performance when there’s a vast amount of data.
Hybrid Recommender Systems
As we’ve seen, both collaborative and content-based filtering have their advantages and drawbacks. Experts designed hybrid recommender systems that grab the best of both worlds. They overcome the problems behind collaborative and content-based filtering and offer better performance.
With hybrid recommender systems, algorithms take into account different factors:
- Users’ preferences
- Users’ past purchases
- Users’ product ratings
- Similarities between items
- Current trends
A classic example of a hybrid recommender system is Netflix. Here, you’ll see the recommended content based on the TV shows and movies you’ve already watched. You can also discover content that users with similar interests enjoy and can see what’s trending at the moment.
The biggest strong points of this system are:
- It offers precise and personalized recommendations.
- It doesn’t have cold-start problems (poor performance due to lack of information).
The main drawback is:
- It’s highly complex.
Machine Learning Techniques in Recommender Systems
It’s fair to say that machine learning is like the foundation stone of recommender systems. This sub-type of artificial intelligence (AI) represents the process of computers generating knowledge from data. We understand the “machine” part, but what does “learning” implicate? “Learning” means that machines improve their performance and enhance capabilities as they learn more information and become more “experienced.”
The four machine learning techniques recommender systems love are:
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Deep learning
Supervised Learning
In this case, algorithms feed off past data to predict the future. To do that, algorithms need to know what they’re looking for in the data and what the target is. The data in which we know the target label are named labeled datasets, and they teach algorithms how to classify data or make predictions.
Supervised learning has found its place in recommender systems because it helps understand patterns and offers valuable recommendations to users. It analyzes the users’ past behavior to predict their future. Plus, supervised learning can handle large amounts of data.
The most obvious drawback of supervised learning is that it requires human involvement, and training machines to make predictions is no walk in the park. There’s also the issue of result accuracy. Whether or not the results will be accurate largely depends on the input and target values.
Unsupervised Learning
With unsupervised learning, there’s no need to “train” machines on what to look for in datasets. Instead, the machines analyze the information to discover hidden patterns or similar features. In other words, you can sit back and relax while the algorithms do their magic. There’s no need to worry about inputs and target values, and that is one of the best things about unsupervised learning.
How does this machine learning technique fit into recommender systems? The main application is exploration. With unsupervised learning, you can discover trends and patterns you didn’t even know existed. It can discover surprising similarities and differences between users and their online behavior. Simply put, unsupervised learning can perfect your recommendation strategies and make them more precise and personal.
Reinforcement Learning
Reinforcement learning is another technique used in recommender systems. It functions like a reward-punishment system, where the machine has a goal that it needs to achieve through a series of steps. The machine will try a strategy, receive back, change the strategy as necessary, and try again until it reaches the goal and gets a reward.
The most basic example of reinforcement learning in recommender systems is movie recommendations. In this case, the “reward” would be the user giving a five-star rating to the recommended movie.
Deep Learning
Deep learning is one of the most advanced (and most fascinating) subcategories of AI. The main idea behind deep learning is building neural networks that mimic and function similarly to human brains. Machines that feature this technology can learn new information and draw their own conclusions without any human assistance.
Thanks to this, deep learning offers fine-tuned suggestions to users, enhances their satisfaction, and ultimately leads to higher profits for companies that use it.
Challenges and Future Trends in Recommender Systems
Although we may not realize it, recommender systems are the driving force of online purchases and content streaming. Without them, we wouldn’t be able to discover amazing TV shows, movies, songs, and products that make our lives better, simpler, and more enjoyable.
Without a doubt, the internet would look very different if it wasn’t for recommender systems. But as you may have noticed, what you see as recommended isn’t always what you want, need, or like. In fact, the recommendations can be so wrong that you may be shocked how the internet could misinterpret you like that. Recommender systems aren’t perfect (at least not yet), and they face different challenges that affect their performance:
- Data sparsity and scalability – If users don’t leave a trace online (don’t review items), the machines don’t have enough data to analyze and make recommendations. Likewise, the datasets change and grow constantly, which can also represent an issue.
- Cold start problem – When new users become a part of a system, they may not receive relevant recommendations because algorithms don’t “know” their preferences, past purchases, or ratings. The same goes for new items introduced to a system.
- Privacy and security concerns – Privacy and security are always at the spotlight of recommender systems. The situation is a paradox. The more a system knows about you, the better recommendations you’ll get. At the same time, you may not be willing to let a system learn your personal information if you want to maintain your privacy. But then, you won’t enjoy great recommendations.
- Incorporating contextual information – Besides “typical” information, other data can help make more precise and relevant recommendations. The problem is how to incorporate them.
- Explainability and trust – Can a recommender system explain why it made a certain recommendation, and can you trust it?
Discover New Worlds with Recommender Systems
Recommender systems are growing smarter by the day, thanks to machine learning and technological advancements. The recommendations were introduced to allow us to save time and find exactly what we’re looking for in a jiff. At the same time, they let us experiment and try something different.
While recommender systems have come a long way, there’s still more than enough room for further development.
Related posts
The Open Institute of Technology (OPIT) is the perfect place for those looking to master the core skills and gain the fundamental knowledge they need to enter the exciting and dynamic environment of the tech industry. While OPIT’s various degrees and courses unlock the doors to numerous careers, students may not know exactly which line of work they wish to enter, or how, exactly, to take the next steps.
That’s why, as well as providing exceptional online education in fields like Responsible AI, Computer Science, and Digital Business, OPIT also offers an array of career-related services, like the Peer Career Mentoring Program. Designed to provide the expert advice and support students need, this program helps students and alumni gain inspiration and insight to map out their future careers.
Introducing the OPIT Peer Career Mentoring Program
As the name implies, OPIT’s Peer Career Mentoring Program is about connecting students and alumni with experienced peers to provide insights, guidance, and mentorship and support their next steps on both a personal and professional level.
It provides a highly supportive and empowering space in which current and former learners can receive career-related advice and guidance, harnessing the rich and varied experiences of the OPIT community to accelerate growth and development.
Meet the Mentors
Plenty of experienced, expert mentors have already signed up to play their part in the Peer Career Mentoring Program at OPIT. They include managers, analysts, researchers, and more, all ready and eager to share the benefits of their experience and their unique perspectives on the tech industry, careers in tech, and the educational experience at OPIT.
Examples include:
- Marco Lorenzi: Having graduated from the MSc in Applied Data Science and AI program at OPIT, Marco has since progressed to a role as a Prompt Engineer at RWS Group and is passionate about supporting younger learners as they take their first steps into the workforce or seek career evolution.
- Antonio Amendolagine: Antonio graduated from the OPIT MSc in Applied Data Science and AI and currently works as a Product Marketing and CRM Manager with MER MEC SpA, focusing on international B2B businesses. Like other mentors in the program, he enjoys helping students feel more confident about achieving their future aims.
- Asya Mantovani: Asya took the MSc in Responsible AI program at OPIT before taking the next steps in her career as a Software Engineer with Accenture, one of the largest IT companies in the world, and a trusted partner of the institute. With a firm belief in knowledge-sharing and mutual support, she’s eager to help students progress and succeed.
The Value of the Peer Mentoring Program
The OPIT Peer Career Mentoring Program is an invaluable source of support, inspiration, motivation, and guidance for the many students and graduates of OPIT who feel the need for a helping hand or guiding light to help them find the way or make the right decisions moving forward. It’s a program built around the sharing of wisdom, skills, and insights, designed to empower all who take part.
Every student is different. Some have very clear, fixed, and firm objectives in mind for their futures. Others may have a slightly more vague outline of where they want to go and what they want to do. Others live more in the moment, focusing purely on the here and now, but not thinking too far ahead. All of these different types of people may need guidance and support from time to time, and peer mentoring provides that.
This program is also just one of many ways in which OPIT bridges the gaps between learners around the world, creating a whole community of students and educators, linked together by their shared passions for technology and development. So, even though you may study remotely at OPIT, you never need to feel alone or isolated from your peers.
Additional Career Services Offered by OPIT
The Peer Career Mentoring Program is just one part of the larger array of career services that students enjoy at the Open Institute of Technology.
- Career Coaching and Support: Students can schedule one-to-one sessions with the institute’s experts to receive insightful feedback, flexibly customized to their exact needs and situation. They can request resume audits, hone their interview skills, and develop action plans for the future, all with the help of experienced, expert coaches.
- Resource Hub: Maybe you need help differentiating between various career paths, or seeing where your degree might take you. Or you need a bit of assistance in handling the challenges of the job-hunting process. Either way, the OPIT Resource Hub contains the in-depth guides you need to get ahead and gain practical skills to confidently move forward.
- Career Events: Regularly, OPIT hosts online career event sessions with industry experts and leaders as guest speakers about the topics that most interest today’s tech students and graduates. You can join workshops to sharpen your skills and become a better prospect in the job market, or just listen to the lessons and insights of the pros.
- Internship Opportunities: There are few better ways to begin your professional journey than an internship at a top-tier company. OPIT unlocks the doors to numerous internship roles with trusted institute partners, as well as additional professional and project opportunities where you can get hands-on work experience at a high level.
In addition to the above, OPIT also teams up with an array of leading organizations around the world, including some of the biggest names, including AWS, Accenture, and Hype. Through this network of trust, OPIT facilitates students’ steps into the world of work.
Start Your Study Journey Today
As well as the Peer Career Mentoring Program, OPIT provides numerous other exciting advantages for those who enroll, including progressive assessments, round-the-clock support, affordable rates, and a team of international professors from top universities with real-world experience in technology. In short, it’s the perfect place to push forward and get the knowledge you need to succeed.
So, if you’re eager to become a tech leader of tomorrow, learn more about OPIT today.
The world has entered the age of artificial intelligence (AI), and this exciting new technology is already changing the face of society in an ever-growing number of ways. It’s influencing a plethora of industries and sectors, from healthcare and education to finance and urban planning. This guide explores AI’s impact on three of the core pillars of life: business, education, and sustainability.
AI in Business: Unlocking Unprecedented Opportunities
In the world of business, the number of uses of AI is growing by the day. Whether it’s in sales, marketing, customer relations, operational optimization, cybersecurity, data management, or some other aspect of organizational life, there are so many ways this technology can unlock new opportunities or expedite existing processes.
Take data as an example. Many businesses now collect and use large amounts of data to inform their decisions in areas like product development or marketing strategy. But they have, up to now, been limited in how they can structure, visualize, and analyze their data. AI changes all that, as it can dig into vast databases with ease, extracting insights to drive actionable decisions in no time.
AI also bridges gaps in communications. It has the power to speak in most major languages, translating audio or written text with astonishing accuracy in an instant. In a globalized world, where many businesses buy and sell with partners, suppliers, investors, and other stakeholders from other nations, AI can help them communicate and exchange information more easily and reliably.
AI in Education: Democratizing and Accelerating the Learning Process
In the educational sector, AI is solving problems that have plagued this industry for generations and transforming the ways in which students learn and teachers teach. It can be used, for example, to personalize a student’s learning plan or adapt content to align with each learner’s favored learning style, making it easier for them to soak up and retain information and skills.
AI’s generative capabilities are also proving useful in the education sector. Teachers, for example, can turn to generative AI models to create lesson plans or supplementary content to support their courses, such as tables, charts, infographics, and images. This all helps to make the learning experience more diverse, dynamic, and engaging for every kind of learner.
On a broader level, there’s clear potential for AI to democratize education across the globe, making learning more accessible to all. That includes those in developing nations who may normally lack opportunities to gain knowledge and skills to achieve their ambitions. If harnessed correctly and responsibly, this technology could elevate education to whole new heights.
AI in Sustainability: Smarter Cities and Next-Level Efficiency
Sustainability is one of the sticking points when talking about AI, as many critics of the technology point to the fact that it involves huge amounts of energy and relies heavily on large and costly data centers to operate. At the same time, AI could also solve many of the sustainability crises facing the world today, uncovering solutions and innovations that may have previously taken decades to develop.
It’s already proving its value in this domain. For instance, DeepMind developed an AI system that was actually able to optimize data center energy efficiency, cutting the amount of energy used to cool data center hardware by a whopping 40% and improving energy efficiency in certain centers by 15%. That’s just one example, and it’s only the start of what AI could do from an environmental perspective.
This tech is also making cities smarter, more efficient, and more pleasant in which to live through AI-powered navigation aids or traffic redistribution systems. It also holds potential for future urban planning, city development, and infrastructure construction, provided the correct systems and frameworks can be established to make the best use of AI’s advantages.
The Ethical Challenges and Risks of AI
Despite its almost countless advantages and possible applications, AI is not without its flaws. This technology brings challenges and risks to go along with its opportunities, and five leading examples include:
- Bias: Algorithmic bias is an issue that has already presented itself during the relatively brief existence of AI so far. Some systems, for example, have issued responses or generated content that could be classified as discriminatory or prejudiced, due to the training data they were given.
- Privacy: There are fears among populations and analysts about the amount of data being fed into AI systems and how such data could be misused, potentially violating people’s rights of privacy and falling foul of data privacy regulations, such as GDPR.
- Misuse: Like so many game-changing technologies, AI has the potential to be used for both benevolent and malicious purposes. It may be used to spread misinformation and “fake news,” influence public opinion, or even in cyber-attacks, for instance.
- Over-reliance: AI is so powerful, with the capacity to carry out tasks with remarkable precision and speed, that it will be tempting for organizations to integrate it into many of their workflows and decision-making processes. But AI cannot be treated as a substitute for human judgment.
- Sustainability: There are also fears about the energy costs associated with AI and the data centers needed to power it, plus the fact that some elements of the burgeoning AI industry may exploit workers in poorer nations worldwide.
Solving These Challenges: Regulation and Responsible Use of AI
With the right approach, it is possible to solve all the above challenges, and more, making AI the most valuable and beneficial new technology the world has seen since the advent of the internet. This will require a two-pronged strategy focusing on both regulation and responsible usage.
Europe is already leading the way in the first aspect. It has introduced the AI Act – a world-first regulatory framework related to artificial intelligence, laying out how it should be used to drive innovation without infringing on the fundamental rights of workers and the larger public.
Educational institutions like the OPIT – Open Institute of Technology are also leading the way in the second aspect, educating people around the world on how to work with AI in a responsible, ethical way, through programs like the MSc in Responsible Artificial Intelligence.
By establishing rules and regulations about AI’s usage and educating the tech leaders of tomorrow in how to work with AI in a fair and responsible way, the future is bright for this exciting and extraordinary new technology.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: