

As computing technology evolved and the concept of linking multiple computers together into a “network” that could share data came into being, it was clear that a model was needed to define and enable those connections. Enter the OSI model in computer network idea.
This model allows various devices and software to “communicate” with one another by creating a set of universal rules and functions. Let’s dig into what the model entails.
History of the OSI Model
In the late 1970s, the continued development of computerized technology saw many companies start to introduce their own systems. These systems stood alone from others. For example, a computer at Retailer A has no way to communicate with a computer at Retailer B, with neither computer being able to communicate with the various vendors and other organizations within the retail supply chain.
Clearly, some way of connecting these standalone systems was needed, leading to researchers from France, the U.S., and the U.K. splitting into two groups – The International Organization for Standardization and the International Telegraph and Telephone Consultive Committee.
In 1983, these two groups merged their work to create “The Basic Reference Model for Open Systems Interconnection (OSI).” This model established industry standards for communication between networked devices, though the path to OSI’s implementation wasn’t as clear as it could have been. The 1980s and 1990s saw the introduction of another model – The TCP IP model – which competed against the OSI model for supremacy. TCP/IP gained so much traction that it became the cornerstone model for the then-budding internet, leading to the OSI model in computer network applications falling out of favor in many sectors. Despite this, the OSI model is still a valuable reference point for students who want to learn more about networking and still have some practical uses in industry.
The OSI Reference Model
The OSI model works by splitting the concept of computers communicating with one another into seven computer network layers (defined below), each offering standardized rules for its specific function. During the rise of the OSI model, these layers worked in concert, allowing systems to communicate as long as they followed the rules.
Though the OSI model in computer network applications has fallen out of favor on a practical level, it still offers several benefits:
- The OSI model is perfect for teaching network architecture because it defines how computers communicate.
- OSI is a layered model, with separation between each layer, so one layer doesn’t affect the operation of any other.
- The OSI model offers flexibility because of the distinctions it makes between layers, with users being able to replace protocols in any layer without worrying about how they’ll impact the other layers.
The 7 Layers of the OSI Model
The OSI reference model in computer network teaching is a lot like an onion. It has several layers, each standing alone but each needing to be peeled back to get a result. But where peeling back the layers of an onion gets you a tasty ingredient or treat, peeling them back in the OSI model delivers a better understanding of networking and the protocols that lie behind it.
Each of these seven layers serves a different function.
Layer 1: Physical Layer
Sitting at the lowest level of the OSI model, the physical layer is all about the hows and wherefores of transmitting electrical signals from one device to another. Think of it as the protocols needed for the pins, cables, voltages, and every other component of a physical device if said device wants to communicate with another that uses the OSI model.
Layer 2: Data Link Layer
With the physical layer in place, the challenge shifts to transmitting data between devices. The data layer defines how node-to-node transfer occurs, allowing for the packaging of data into “frames” and the correction of errors that may happen in the physical layer.
The data layer has two “sub-layers” of its own:
- MAC – Media Access Controls that offer multiplexing and flow control to govern a device’s transmissions over an OSI network.
- LLC – Logical Link Controls that offer error control over the physical media (i.e., the devices) used to transmit data across a connection.
Layer 3: Network Layer
The network layer is like an intermediary between devices, as it accepts “frames” from the data layer and sends them on their way to their intended destination. Think of this layer as the postal service of the OSI model in computer network applications.
Layer 4: Transport Layer
If the network layer is a delivery person, the transport layer is the van that the delivery person uses to carry their parcels (i.e., data packets) between addresses. This layer regulates the sequencing, sizing, and transferring of data between hosts and systems. TCP (Transmission Control Protocol) is a good example of a transport layer in practical applications.
Layer 5: Session Layer
When one device wants to communicate with another, it sets up a “session” in which the communication takes place, similar to how your boss may schedule a meeting with you when they want to talk. The session layer regulates how the connections between machines are set up and managed, in addition to providing authorization controls to ensure no unwanted devices can interrupt or “listen in” on the session.
Layer 6: Presentation Layer
Presentation matters when sending data from one system to another. The presentation layer “pretties up” data by formatting and translating it into a syntax that the recipient’s application accepts. Encryption and decryption is a perfect example, as a data packet can be encrypted to be unreadable to anybody who intercepts it, only to be decrypted via the presentation layer so the intended recipient can see what the data packet contains.
Layer 7: Application Layer
The application layer is a front end through which the end user can interact with everything that’s going on behind the scenes in the network. It’s usually a piece of software that puts a user-friendly face on a network. For instance, the Google Chrome web browser is an application layer for the entire network of connections that make up the internet.
Interactions Between OSI Layers
Though each of the OSI layers in computer networks is independent (lending to the flexibility mentioned earlier), they must also interact with one another to make the network functional.
We see this most obviously in the data encapsulation and de-encapsulation that occurs in the model. Encapsulation is the process of adding information to a data packet as it travels, with de-encapsulation being the method used to remove that data added data so the end user can read what was originally sent. The previously mentioned encryption and decryption of data is a good example.
That process of encapsulation and de-encapsulation defines how the OSI model works. Each layer adds its own little “flavor” to the transmitted data packet, with each subsequent layer either adding something new or de-encapsulating something previously added so it can read the data. Each of these additions and subtractions is governed by the protocols set within each layer. A perfect network can only exist if these protocols properly govern data transmission, allowing for communication between each layer.
Real-World Applications of the OSI Model
There’s a reason why the OSI model in computer network study is often called a “reference” model – though important, it was quickly replaced with other models. As a result, you’ll rarely see the OSI model used as a way to connect devices, with TCP/IP being far more popular. Still, there are several practical applications for the OSI model.
Network Troubleshooting and Diagnostics
Given that some modern computer networks are unfathomably complex, picking out a single error that messes up the whole communication process can feel like navigating a minefield. Every wrong step causes something else to blow up, leading to more problems than you solve. The OSI model’s layered approach offers a way to break down the different aspects of a network to make it easier to identify problems.
Network Design and Implementation
Though the OSI model has few practical purposes, as a theoretical model it’s often seen as the basis for all networking concepts that came after. That makes it an ideal teaching tool for showcasing how networks are designed and implemented. Some even refer to the model when creating networks using other models, with the layered approach helping understand complex networks.
Enhancing Network Security
The concept of encapsulation and de-encapsulation comes to the fore again here (remember – encryption), as this concept shows us that it’s dangerous to allow a data packet to move through a network with no interactions. The OSI model shows how altering that packet as it goes on its journey makes it easier to protect data from unwanted eyes.
Limitations and Criticisms of the OSI Model
Despite its many uses as a teaching tool, the OSI model in computer network has limitations that are the reasons why it sees few practical applications:
- Complexity – As valuable as the layered approach may be to teaching networks, it’s often too complex to execute in practice.
- Overlap – The very flexibility that makes OSI great for people who want more control over their networks can come back to bite the model. The failure to implement proper controls and protocols can lead to overlap, as can the layered approach itself. Each of the computer network layers needs the others to work.
- The Existence of Alternatives – The OSI model walked so other models could run, establishing many fundamental networking concepts that other models executed better in practical terms. Again, the massive network known as the internet is a great example, as it uses the TCP/IP model to reduce complexity and more effectively transmit data.
Use the OSI Reference Model in Computer Network Applications
Though it has little practical application in today’s world, the OSI model in computer network terms is a theoretical model that played a crucial role in establishing many of the “rules” of networking still used today. Its importance is still recognized by the fact that many computing courses use the OSI model to teach the fundamentals of networks.
Think of learning about the OSI model as being similar to laying the foundations for a house. You’ll get to grips with the basic concepts of how networks work, allowing you to build up your knowledge by incorporating both current networking technology and future advancements to become a networking specialist.
Related posts

Open Institute of Technology (OPIT) masterclasses bring students face-to-face with real-world business challenges. In OPIT’s July masterclass, OPIT Professor Francesco Derchi and Ph.D. candidate Robert Mario de Stefano explained the principles of regenerative businesses and how regeneration goes hand in hand with growth.
Regenerative Business Models
Professor Derchi began by explaining what exactly is meant by regenerative business models, clearly differentiating them from sustainable or circular models.
Many companies pursue sustainable business models in which they offset their negative impact by investing elsewhere. For example, businesses that are big carbon consumers will support nature regeneration projects. Circular business models are similar but are more focused on their own product chain, aiming to minimize waste by keeping products in use as long as possible through recycling. Both models essentially aim to have a “net-zero” negative impact on the environment.
Regenerative models are different because they actively aim to have a “net-positive” impact on the environment, not just offsetting their own use but actively regenerating the planet.
Massive Transformative Purpose
While regenerative business models are often associated with philanthropic endeavors, Professor Derchi explained that they do not have to be, and that investment in regeneration can be a driver of growth.
He discussed the importance of corporate purpose in the modern business space. Having a strong and clearly stated corporate purpose is considered essential to drive business decision-making, encourage employee buy-in, and promote customer loyalty.
But today, simple corporate missions, such as “make good shoes,” don’t go far enough. People are looking for a Massive Transformational Purpose (MTP) that can take the business to the next level.
Take, for example, Ben & Jerry’s. The business’s initial corporate purpose may have been to make great ice cream and serve it up in a way that people will enjoy. But the business really began to grow when they embraced an MTP. As they announced in their mission statement, “We believe that ice cream can change the world.” Their business activities also have the aim of advancing human rights and dignity, supporting social and economic justice, and protecting and restoring the Earth’s natural systems. While these aims are philanthropic, they have also helped the business grow.
RePlanet
Professor Derchi next talked about RePlanet, a business he recently worked to develop their MTP. Founded in 2015, RePlanet designs and implements customized renewable energy solutions for businesses and projects. The company already operates in the renewable energy field and ranked as the 21st fastest-growing business in Italy in 2023. So while they were already enjoying great success, Derchi worked with them to see if actively embracing a regenerative business model could unlock additional growth.
Working together, RePlanet moved towards an MTP of building a greener future based on today’s choices, ensuring a cleaner world for generations. Meeting this goal started with the energy products that RePlanet sells, such as energy systems that recover heat from dairy farms. But as the business’s MTP, it goes beyond that. RePlanet doesn’t just engage suppliers; it chooses partners that share its specific values. It also influences the projects they choose to work on – they prioritize high-impact social projects, such as recently installing photovoltaic energy systems at a local hospital in Nigeria – and how RePlanet treats its talent, acknowledging that people are the true energy of the company.
Regenerative Business Strategies
Based on work with RePlanet and other businesses, Derchi has identified six archetypal regenerative business strategies for businesses that want to have both a regenerative impact and drive growth:
- Regenerative Leadership – Laying the foundation for regeneration in a broader sense throughout the company
- Nature Regeneration – Strategies to improve the health of the natural world
- Social Regeneration – Regenerating human ecosystems through things such as fair-trade practices
- Responsible Sourcing – Empowering and strengthening suppliers and their communities
- Health & Well-being – Creating products and services that have a positive effect on customers
- Employee Focus – Improve work conditions, lives, and well-being of employees.
Case Studies
Building on the concept of regenerative business models, Roberto Mario de Stefano shared other case studies of businesses that are having a positive impact and enjoying growth thanks to regenerative business models and strategies.
Biorfarm
Biorfarm is a digital platform that supports small-scale agriculture by creating a direct link between small farmers and consumers. Cutting out the middleman in modern supply chains means that farmers earn about 50% more for their produce. They set consumers up as “digital farmers” who actively support and learn about farming activities to promote more conscious food consumption.
Their vision is to create a food economy in which those who produce food and those who consume it are connected. This moves consumers from passive cash cows for large corporations that prioritize profits over the well-being of farmers to actively supporting natural production and a more sustainable system.
Rifo Lab
Rifo Lab is a circular clothing brand with the vision of addressing the problem of overproduction in the clothing industry. Established in Prato, Italy, a traditional textile-producing area, the company produces clothes made from textile waste and biodegradable materials. There are no physical stores, and all orders must be placed online; everything is made to order, reducing excess production.
With an eye on social regeneration, all production takes place within 30 kilometers of their offices, allowing the business to support ethical and local production. They also work with companies that actively integrate migrants into the local community, sharing their local artisan crafts with future generations.
Ogyre
Ogyre is a digital platform that allows you to pay fishermen to fish for waste. When fishermen are out conducting their livelihood, they also collect a significant amount of waste from the ocean, especially plastic waste. Ogyre arranges for fishermen to get paid for collecting that waste, which in turn supports the local fishing communities, and then transforms the waste collected into new sustainable products.
Moving Towards a Regenerative Future
The masterclass concluded with a Q&A session, where it explained that working in regenerative businesses requires the same skills as any other business. But it also requires you to embrace a mindset where value comes from giving and that growth is about working together for a better future, and not just competition.

Riccardo Ocleppo’s vision for the Open Institute of Technology (OPIT) started when he realized that his own university-level training had not properly prepared him for the modern workplace. Technological innovation is moving quickly and changing the nature of work, while university curricula evolve slowly, in part due to systems in place designed to preserve the quality of courses.
Ocleppo was determined to create a higher learning institution that filled the gap between the two realities – delivering high-quality education while preparing professionals to work in dynamic environments that keep pace with technology. Thus, OPIT opened enrolments in 2023 with a curriculum that created a unique bridge between the present and the future.
This is the story of one student, Ania Jaca, whose time at OPIT gave her the skills to connect her knowledge of product design to full system deployment.
Meet Ania
Ania is an example of an active professional who was able to identify what was missing in her own skills that would be needed if she wanted to advance her career in the direction she desired.
Ania is a highly skilled professional who was working on product and industrial design at Deloitte. She has an MA in product design, speaks five languages, studied in China, and is an avid boxer. She had the intelligence and the temperament to succeed in her career, but felt that she lacked the skills to advance and move from determining how products look to how systems really work, scale, and evolve.
Ania taught herself skills such as Python, artificial intelligence (AI), and cloud infrastructure, but soon realized that she needed a more structured education to go deeper. Thus, the search for her next steps began, and her introduction to OPIT.
OPIT appealed to Ania because it offered a fully EU-accredited MSc that she could pursue at her own pace, thanks to remote delivery and flexible hours. But more than that, it filled exactly the knowledge gap she was looking to build upon, teaching her technical foundations, but always with a focus on applications in the real world. Part of the appeal was the faculty, which includes professionals who are leaders in their field and who deal with current professional challenges on a daily basis, which they can bring into the classroom.
Ania enrolled in OPIT’s MSc in Applied Data Science & AI.
MSc in Applied Data Science and AI
This is OPIT’s first master’s program, which also launched in 2023, and is now one of four on offer. The course is designed for graduates like Ania who want a career at the intersection of management and technology. It is attractive to professionals who are already working in this area but lack the technical training to step into certain roles. OPIT requires no computer science prerequisites, so it accepted Ania with her MA in product design.
It is an intensive program that starts with foundational application courses in business, data science, machine learning, artificial intelligence, and problem-solving. The program then moves towards applying data science and AI methodologies and tools to real-life business problems.
The course combines theoretical study with a capstone project that lets students apply what they learn in the real world, either at their existing company or through internship programs. Many of the projects developed by students go on to become fundamental to the businesses they work with.
Ania’s Path Forward
Ania is working on her capstone project with Neperia Group, an Italian-based IT systems development company that works mostly with financial, insurance, and industrial companies. They specialize in developing analysis tools for existing software to enhance insight, streamline management, minimize the impact of corrective and evolutionary interventions, and boost performance.
Ania is specifically working on tools for assessing vulnerabilities in codebases as an advanced cybersecurity tool.
Ania credits her studies at OPIT for helping her build solid foundations in data science, machine learning, and cloud workflows, giving her a thorough understanding of digital products from end to end. She feels this has prepared her for roles at the intersection between infrastructure, security, and deployment, which is exactly where she wants to be. OPIT is excited to see where Ania’s career takes her in the coming years.
Preparing for the Future of Work
Overall, studying at OPIT has helped Ania and others like her prepare for the future of work. According to the Visual Capitalist, the fastest-growing jobs between 2025 and 2030 will be in big data (up by 110%), Fintech engineers (up by 95%), AI and machine learning specialists (up by 85%), software application developers (up by 60%), and security management specialists (up by 55%).
However, while these industries are growing, entry-level opportunities are declining in areas such as software development and IT. This is because AI now performs many of the tasks associated with those roles. Instead, companies are looking for experienced professionals to take on roles that involve more strategic oversight and innovative problem-solving. But how do recent graduates leapfrog past experienced professionals when there is a lack of entry-level positions to make the transition?
This is another challenge that OPIT addresses in its course design. Students don’t just learn the theory, OPIT actively encourages them to focus on applications, allowing them to build experience while studying. The capstone project consolidates this, enabling students to demonstrate to future employers their expertise at deploying technology to solve problems.
OPIT also has a dynamic Career Services department that specifically works with students to prepare them for the types of roles they want. This focus on not only learning but building a career is one of the elements that makes OPIT stand out in preparing graduates for the workplace.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: