

Take a sprinkling of math, add some statistical analysis, and coat with the advanced programming and analytics that enables people to pore through enormous batches of data and you have the recipe for a data scientist.
These professionals (and their data-based talents) are sought after in industries of all shapes and sizes. Every sector from healthcare, finance, and retail to communications and even the government can make use of the skills of data scientists to advance. That’s great news if you’re considering completing your Master’s degree in the subject, as your degree is the key that can unlock the door to a comfortable five-figure salary.
Here, we look at the Master’s in data science salary and explain what you can do to maximize your potential.
Masters in Data Science: An Overview
As a postgraduate degree course, a Masters in data science builds on some of the core skills you’ll learn in a computer science or information technology degree. Think of it as a specialization. You’ll expand on the programming and analytical skills you’ve already developed to learn how to extract actionable insights from massive datasets. In the world of Big Data (where companies generate more data than at any other point in history), those skills are more important than ever.
Speaking of skills, you’ll develop or hone the following when studying for your Master’s in data science:
- Data Analysis – The ability to analyze data (i.e., interpret what seemingly random datasets tell you) is one of the first skills you’ll pick up in your degree.
- Data Visualization – Where your analysis helps you to see what you’re looking at, data visualization is all about representing that data visually so that others see what you see.
- AI and Machine Learning – The nascent technologies involved in the artificial intelligence sector revolve around data, in addition to many modern AI technologies being helpful for analyzing data. You’ll learn both sides, developing the skills to both create and use AI.
- Software Engineering and Programming – Don’t assume the programming skills you have from your previous degree will go to waste, as you’ll need them for a data science Master’s. You’ll use plenty of new tools, in addition to picking up more skills in languages like Python, SQL, and R.
- Soft Skills – A Master’s in data science isn’t all technical. You’ll develop some soft skills that prove useful in the workplace, such as communication, basic teamwork, and management. Most data science courses also teach ethics so you can get to grips with the idea of doing the right thing with data.
The Top Universities for a Data Science Masters
According to the university rating website Collegedunia, there are more than 60 leading data sciences universities in the United States alone, each offering both Bachelor’s and Master’s degrees in the subject. It ranks the following as the top five institutions for getting your Master’s in data science:
- MIT – As the top data science university in the world (according to the QS Global Rankings), MIT is the first choice for any prospective student.
- Harvard University – The “Harvard” name carries weight regardless of the course you choose. Data scientists have their pick of a standard Master’s in data science or a course dedicated to health data science.
- Columbia University – Those who want to fast-track their studies may find that the intensive one-year data science Master’s that Columbia offers is a better choice than traditional two-year courses.
- John Hopkins University – Though it’s best known as one of America’s best medical schools, John Hopkins also has a strong data science department. It may be a great choice for those who want to use their data science skills to get into the medical field.
- Northwestern University – Ranking at 30 in the QS Global Rankings, Northwestern offers Master’s degrees in both data science and analytics, with the latter expanding on one of the core skills needed for data science.
Masters in Data Science Salary Potential
As great as the skills you’ll get will be, you want to know more about the Master’s in data science salary you can expect to earn.
The good news is that a strong salary isn’t just possible. It’s likely. According to Indeed, the average salary for a data scientist is £49,749 in the UK. Cult.Honeypot has interesting figures for Europe as a whole, noting that the average data scientist on the continent earns €60,815, which matches up well to general salary expectations of €60,000. You can also expect a position in this field to come with numerous benefits, including medical insurance (where relevant) and flexible working conditions.
Of course, there are several factors that influence your specific earning power:
- Geographic location
- The specific industry in which you work
- Your experience level
- The size of the company for which you work
For example, a brand-new graduate who takes a position at a start-up in a non-tech industry may find that they earn at the lower end of the scale, though they’ll develop experience that could serve them well later on.
Data scientists also tend to have higher salary prospects than those in comparable fields. For example, more data from Indeed shows us that data scientists in the UK earn more, on average, than software engineers (£49,409), computer scientists (£45,245), and computer engineers (£24,780). Furthermore, a Master’s in data science is wide-ranging enough that it’ll give you many of the skills you need for the above industries, assuming you’d want a career change or discover that data science isn’t for you.
Benefits of a Masters in Data Science for Earning Power
It’s clear that the Master’s in data science salary potential is strong, with mid-five-figure salaries being the standard (rather than the exception) for the industry. But there are benefits beyond potential earnings that make the Master’s course a good one to take.
More Job Opportunities
Data science is everywhere in modern industry because every company produces data. You can apply your skills in industries like healthcare, manufacturing, and retail, meaning you have plenty of job opportunities. The research backs this statement up, too, with figures from Polaris Market Research suggesting a 27.6% compound annual growth rate (CAGR) for the data science industry between 2022 and 2030.
Greater Job Security
The encroachment of AI into almost every aspect of our lives has many people worried about job security. Some even speculate that machines will take over many roles in the coming years. Data scientists don’t have to worry about that. Not only will you use AI to advance your research, but you may also be responsible for further developments in the AI and machine learning fields. All of which will make you crucial to the continuation of the AI trend.
Opportunities for Career Advancement
The salary figure quoted above (average salary of €60,815) is for a fairly standard data science role. Opportunities for career advancement exist, whether that be simply moving into a more senior position in a company or taking control of a team, thus adding management to your skill set. Those who prefer conducting research will also find that many universities and large companies have teams dedicated to using data science to create social and commercial change.
Tips for Maximizing Earnings With a Masters in Data Science
With the Master’s in data science salary potential already being attractive enough (six figures is a great start), you may not worry too much about maximizing your earning potential at the start of your career. But as you get deeper into your working life, the following tips will help you get more money in return for the skills you bring to the table.
1 – Choose the Right University and Program
Universities aren’t built equally, with some carrying more weight than others. For example, a data science Master’s degree from MIT holds huge weight because it’s one of America’s top universities for the subject. Employers know what the school is about, understand that those who study there undergo superb training, and will thus be more willing to both hire and offer more money to its graduates. The point is that where you go (and what you study in your course) influences how employers see you, which also influences your earning potential.
2 – Gain Relevant Work Experience
As with any career path, what you learn along the path is as valuable as the skills you pick up when studying. You can get a head start on other data science graduates if you take on internships or get involved in research projects while studying, giving you some work experience to add to your resume that could lead to higher initial salary offers.
3 – Leverage Networking and Connections
Meeting the right people at the right times can do wonders for your career. Studying for a Master’s in data science exposes you to professors (and even people who work in the industry) who can put you in touch with people who offer roles in the industry. Continuous building on these connections, from staying active in the industry to leveraging social media, offers more opportunities for advancement.
4 – Stay Up-to-Date With Industry Trends
Data science is a fast-moving sector, with constant advancements occurring at both the high level (the evolution of AI) and in terms of how we use data science in different industries. Keeping on top of these advancements means you stay “in the know” and can see potential career paths branching out before you.
5 – Pursue Additional Qualifications
Keeping with the theme of staying up-to-date, how you build on your skills via continuing education can influence your salary potential. A Master’s degree in data science is impressive. But a degree supplemented by specialized certifications, proof of bootcamp completion, and any other accolades puts you ahead of the pack of other graduates.
Turn Your Master’s in Data Science Into a Great Career
In addition to opening you up to an exciting career in a field that’s undergoing tremendous growth, a Master’s in data science comes with mid-five-figure salary potential. You can boost your Master’s in data science salary expectations through networking, specialization, and simply staying up-to-date with what’s happening in the industry.
Granted, there are time and monetary commitments involved. You usually dedicate two years of your life to getting your degree (though some universities offer one-year data science Master’s courses) and you’ll pay a five-figure sum for your education. But the benefits on the backend of that commitment are so vast that a Master’s in data science may be the key to unlocking huge earnings in the data industry.
Related posts

The world is rapidly changing. New technologies such as artificial intelligence (AI) are transforming our lives and work, redefining the definition of “essential office skills.”
So what essential skills do today’s workers need to thrive in a business world undergoing a major digital transformation? It’s a question that Alan Lerner, director at Toptal and lecturer at the Open Institute of Technology (OPIT), addressed in his recent online masterclass.
In a broad overview of the new office landscape, Lerner shares the essential skills leaders need to manage – including artificial intelligence – to keep abreast of trends.
Here are eight essential capabilities business leaders in the AI era need, according to Lerner, which he also detailed in OPIT’s recent Master’s in Digital Business and Innovation webinar.
An Adapting Professional Environment
Lerner started his discussion by quoting naturalist Charles Darwin.
“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change.”
The quote serves to highlight the level of change that we are currently seeing in the professional world, said Lerner.
According to the World Economic Forum’s The Future of Jobs Report 2025, over the next five years 22% of the labor market will be affected by structural change – including job creation and destruction – and much of that change will be enabled by new technologies such as AI and robotics. They expect the displacement of 92 million existing jobs and the creation of 170 million new jobs by 2030.
While there will be significant growth in frontline jobs – such as delivery drivers, construction workers, and care workers – the fastest-growing jobs will be tech-related roles, including big data specialists, FinTech engineers, and AI and machine learning specialists, while the greatest decline will be in clerical and secretarial roles. The report also predicts that most workers can anticipate that 39% of their existing skill set will be transformed or outdated in five years.
Lerner also highlighted key findings in the Accenture Life Trends 2025 Report, which explores behaviors and attitudes related to business, technology, and social shifts. The report noted five key trends:
- Cost of Hesitation – People are becoming more wary of the information they receive online.
- The Parent Trap – Parents and governments are increasingly concerned with helping the younger generation shape a safe relationship with digital technology.
- Impatience Economy – People are looking for quick solutions over traditional methods to achieve their health and financial goals.
- The Dignity of Work – Employees desire to feel inspired, to be entrusted with agency, and to achieve a work-life balance.
- Social Rewilding – People seek to disconnect and focus on satisfying activities and meaningful interactions.
These are consumer and employee demands representing opportunities for change in the modern business landscape.
Key Capabilities for the AI Era
Businesses are using a variety of strategies to adapt, though not always strategically. According to McClean & Company’s HR Trends Report 2025, 42% of respondents said they are currently implementing AI solutions, but only 7% have a documented AI implementation strategy.
This approach reflects the newness of the technology, with many still unsure of the best way to leverage AI, but also feeling the pressure to adopt and adapt, experiment, and fail forward.
So, what skills do leaders need to lead in an environment with both transformation and uncertainty? Lerner highlighted eight essential capabilities, independent of technology.
Capability 1: Manage Complexity
Leaders need to be able to solve problems and make decisions under fast-changing conditions. This requires:
- Being able to look at and understand organizations as complex social-technical systems
- Keeping a continuous eye on change and adopting an “outside-in” vision of their organization
- Moving fast and fixing things faster
- Embracing digital literacy and technological capabilities
Capability 2: Leverage Networks
Leaders need to develop networks systematically to achieve organizational goals because it is no longer possible to work within silos. Leaders should:
- Use networks to gain insights into complex problems
- Create networks to enhance influence
- Treat networks as mutually rewarding relationships
- Develop a robust profile that can be adapted for different networks
Capability 3: Think and Act “Global”
Leaders should benchmark using global best practices but adapt them to local challenges and the needs of their organization. This requires:
- Identifying what great companies are achieving and seeking data to understand underlying patterns
- Developing perspectives to craft global strategies that incorporate regional and local tactics
- Learning how to navigate culturally complex and nuanced business solutions
Capability 4: Inspire Engagement
Leaders must foster a culture that creates meaningful connections between employees and organizational values. This means:
- Understanding individual values and needs
- Shaping projects and assignments to meet different values and needs
- Fostering an inclusive work environment with plenty of psychological safety
- Developing meaningful conversations and both providing and receiving feedback
- Sharing advice and asking for help when needed
Capability 5: Communicate Strategically
Leaders should develop crisp, clear messaging adaptable to various audiences and focus on active listening. Achieving this involves:
- Creating their communication style and finding their unique voice
- Developing storytelling skills
- Utilizing a data-centric and fact-based approach to communication
- Continual practice and asking for feedback
Capability 6: Foster Innovation
Leaders should collaborate with experts to build a reliable innovation process and a creative environment where new ideas thrive. Essential steps include:
- Developing or enhancing structures that best support innovation
- Documenting and refreshing innovation systems, processes, and practices
- Encouraging people to discover new ways of working
- Aiming to think outside the box and develop a growth mindset
- Trying to be as “tech-savvy” as possible
Capability 7: Cultivate Learning Agility
Leaders should always seek out and learn new things and not be afraid to ask questions. This involves:
- Adopting a lifelong learning mindset
- Seeking opportunities to discover new approaches and skills
- Enhancing problem-solving skills
- Reviewing both successful and unsuccessful case studies
Capability 8: Develop Personal Adaptability
Leaders should be focused on being effective when facing uncertainty and adapting to change with vigor. Therefore, leaders should:
- Be flexible about their approach to facing challenging situations
- Build resilience by effectively managing stress, time, and energy
- Recognize when past approaches do not work in current situations
- Learn from and capitalize on mistakes
Curiosity and Adaptability
With the eight key capabilities in mind, Lerner suggests that curiosity and adaptability are the key skills that everyone needs to thrive in the current environment.
He also advocates for lifelong learning and teaches several key courses at OPIT which can lead to a Bachelor’s Degree in Digital Business.

Many people treat cyber threats and digital fraud as a new phenomenon that only appeared with the development of the internet. But fraud – intentional deceit to manipulate a victim – has always existed; it is just the tools that have changed.
In a recent online course for the Open Institute of Technology (OPIT), AI & Cybersecurity Strategist Tom Vazdar, chair of OPIT’s Master’s Degree in Enterprise Cybersecurity, demonstrated the striking parallels between some of the famous fraud cases of the 18th century and modern cyber fraud.
Why does the history of fraud matter?
Primarily because the psychology and fraud tactics have remained consistent over the centuries. While cybersecurity is a tool that can combat modern digital fraud threats, no defense strategy will be successful without addressing the underlying psychology and tactics.
These historical fraud cases Vazdar addresses offer valuable lessons for current and future cybersecurity approaches.
The South Sea Bubble (1720)
The South Sea Bubble was one of the first stock market crashes in history. While it may not have had the same far-reaching consequences as the Black Thursday crash of 1929 or the 2008 crash, it shows how fraud can lead to stock market bubbles and advantages for insider traders.
The South Sea Company was a British company that emerged to monopolize trade with the Spanish colonies in South America. The company promised investors significant returns but provided no evidence of its activities. This saw the stock prices grow from £100 to £1,000 in a matter of months, then crash when the company’s weakness was revealed.
Many people lost a significant amount of money, including Sir Isaac Newton, prompting the statement, “I can calculate the movement of the stars, but not the madness of men.“
Investors often have no way to verify a company’s claim, making stock markets a fertile ground for manipulation and fraud since their inception. When one party has more information than another, it creates the opportunity for fraud. This can be seen today in Ponzi schemes, tech stock bubbles driven by manipulative media coverage, and initial cryptocurrency offerings.
The Diamond Necklace Affair (1784-1785)
The Diamond Necklace Affair is an infamous incident of fraud linked to the French Revolution. An early example of identity theft, it also demonstrates that the harm caused by such a crime can go far beyond financial.
A French aristocrat named Jeanne de la Mont convinced Cardinal Louis-René-Édouard, Prince de Rohan into thinking that he was buying a valuable diamond necklace on behalf of Queen Marie Antoinette. De la Mont forged letters from the queen and even had someone impersonate her for a meeting, all while convincing the cardinal of the need for secrecy. The cardinal overlooked several questionable issues because he believed he would gain political benefit from the transaction.
When the scheme finally exposed, it damaged Marie Antoinette’s reputation, despite her lack of involvement in the deception. The story reinforced the public perception of her as a frivolous aristocrat living off the labor of the people. This contributed to the overall resentment of the aristocracy that erupted in the French Revolution and likely played a role in Marie Antoinette’s death. Had she not been seen as frivolous, she might have been allowed to live after her husband’s death.
Today, impersonation scams work in similar ways. For example, a fraudster might forge communication from a CEO to convince employees to release funds or take some other action. The risk of this is only increasing with improved technology such as deepfakes.
Spanish Prisoner Scam (Late 1700s)
The Spanish Prisoner Scam will probably sound very familiar to anyone who received a “Nigerian prince” email in the early 2000s.
Victims received letters from a “wealthy Spanish prisoner” who needed their help to access his fortune. If they sent money to facilitate his escape and travel, he would reward them with greater riches when he regained his fortune. This was only one of many similar scams in the 1700s, often involving follow-up requests for additional payments before the scammer disappeared.
While the “Nigerian prince” scam received enough publicity that it became almost unbelievable that people could fall for it, if done well, these can be psychologically sophisticated scams. The stories play on people’s emotions, get them invested in the person, and enamor them with the idea of being someone helpful and important. A compelling narrative can diminish someone’s critical thinking and cause them to ignore red flags.
Today, these scams are more likely to take the form of inheritance fraud or a lottery scam, where, again, a person has to pay an advance fee to unlock a much bigger reward, playing on the common desire for easy money.
Evolution of Fraud
These examples make it clear that fraud is nothing new and that effective tactics have thrived over the centuries. Technology simply opens up new opportunities for fraud.
While 18th-century scammers had to rely on face-to-face contact and fraudulent letters, in the 19th century they could leverage the telegraph for “urgent” communication and newspaper ads to reach broader audiences. In the 20th century, there were telephones and television ads. Today, there are email, social media, and deepfakes, with new technologies emerging daily.
Rather than quack doctors offering miracle cures, we see online health scams selling diet pills and antiaging products. Rather than impersonating real people, we see fake social media accounts and catfishing. Fraudulent sites convince people to enter their bank details rather than asking them to send money. The anonymity of the digital world protects perpetrators.
But despite the technology changing, the underlying psychology that makes scams successful remains the same:
- Greed and the desire for easy money
- Fear of missing out and the belief that a response is urgent
- Social pressure to “keep up with the Joneses” and the “Bandwagon Effect”
- Trust in authority without verification
Therefore, the best protection against scams remains the same: critical thinking and skepticism, not technology.
Responding to Fraud
In conclusion, Vazdar shared a series of steps that people should take to protect themselves against fraud:
- Think before you click.
- Beware of secrecy and urgency.
- Verify identities.
- If it seems too good to be true, be skeptical.
- Use available security tools.
Those security tools have changed over time and will continue to change, but the underlying steps for identifying and preventing fraud remain the same.
For more insights from Vazdar and other experts in the field, consider enrolling in highly specialized and comprehensive programs like OPIT’s Enterprise Security Master’s program.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: