AI and machine learning are like an unstoppable tidal wave in today’s world. We’ve already seen the crest of that wave appear over the horizon with increased automation in businesses and the emergence of apps like ChatGPT. But in the coming years, the wave will engulf the world, making AI big business.


That’s supported by statistics from Statista, too, with reports that the AI market that was worth $200 billion (approx. €185 billion) in 2022 will be worth a staggering $2 trillion (approx. €1.85 trillion) in 2030. The point is that massive growth is coming in AI, and the right Master’s in AI is the key for you to be a part of that growth rather than getting stuck in an industry that gets consumed by it.


Top European Programs for Masters in AI and ML


In choosing the MSc artificial intelligence programs that appear on this list, we looked at factors ranging from the quality (and variety) of course content to who provides the degree. The three courses highlighted here are among Europe’s best to offer to European and overseas students.


Master in Artificial Intelligence (Universita di Bologna)


Though it’s held in Italy, this Master’s program is delivered in English as part of Universita di Bologna’s computer science program. It’s an on-campus course, meaning you’ll have to move to Bologna to attend.


The course provides a solid grounding in the foundations of AI over two years. You’ll get to grips with topics like machine learning and natural language processing, in addition to touching on the ethical and social issues that the rise of AI brings to the table.


The course is welcoming to international students, as it currently has a 77% ratio of international students who don’t come from Bologna. To apply, you must complete an application on the Studenti Online program, along with a mandatory form. Failure to follow this procedure leads to your application being discarded. Applicants don’t necessarily need to hold a Bachelor’s degree, though they must demonstrate a transcript of record that shows they have earned at least 150 ECTS or CFU credits in majors like computer science, mathematics, statistics, and physics.


The course page boasts that 90.5% of its 2021 graduates were happy with their degrees. It’s natural to assume most of these graduates leveraged their Master’s in artificial intelligence to move into careers in the field.


Master in Applied Data Science & AI (OPIT)


If you want to master artificial intelligence with a sprinkling of applying that mastery to the data science industry, OPIT’s course is right for you. It’s an 18-month course (though a 12-month fast-track version is available) that is fully online and delivers 90 ECTS credits. The first term covers the foundational aspects of AI, including subjects like machine learning and data science. But the second term stands out as it moves study from the theoretical to the practical by challenging you to solve real-world problems with your knowledge.


As an online program, it’s available to anybody anywhere, with entry requirements also being flexible. You’ll need a BSc degree, even one from a non-technical field, and should demonstrate English proficiency up to the B2 level with appropriate certification. Don’t worry if you don’t have an English language certification because OPIT offers its own that you can take before registering for the course.


Career-wise, the course is a good option because it occupies an interesting middle-ground between theory and practicality. The second term, in particular, equips you with skills that you can apply directly in fields as varied as IT business analysis, business intelligence, and data science.



MSc in Advanced Computer Science (University of Oxford)


Though it’s not marketed directly as a Master’s in machine learning and artificial intelligence, the University of Oxford’s program gives you excellent qualifications in both. It’s also delivered by an institution that EduRank names as the best for AI in the UK, and sixth-best in the world. The course examines advanced machine learning and computer security techniques, focusing on computational models and the algorithms behind them.


It’s a full-time program demanding 35 hours of weekly study, 15 of which you’ll spend on campus with the other 20 dedicated to self-study. It’s also a tough nut to crack for applicants, as the University of Oxford has a low 18% acceptance rate. You’ll need a first-class undergraduate degree with honors (or an equivalent) in mathematics or computer science to stand a chance of getting into one of the UK’s most prestigious universities.


Those tough entry requirements pay off later on, though, as the words “University of Oxford” on a CV immediately make employers stand up and pay attention. The wide-ranging approach of the program also means you’re not focusing solely on AI, opening up career opportunities in other fields related to math and statistical analysis.


Data Science Master – Europe’s Best Options


Data science is an industry that requires you to translate your understanding of algorithmic theory to transform complex data sets into actionable insights. It’s also an industry that’s making increasingly heavy use of AI tools, making a Master’s in data science a great companion (or alternative) to the best artificial intelligence Master in Europe. As you noticed above, OPIT’s MSc AI program includes elements of data science, though the two programs here (covered in brief) are excellent choices as standalone programs.


MSc Data Sciences and Business Analytics (Essec Business School)


This hybrid course lasts for either one or two years, depending on your background, and focuses on the application of data sciences in a business context. It’s also ranked as the fourth-best Master’s in business analytics in the world by QS World University Rankings.


That high ranking is backed up by the university’s own statistics, which state that over half of its students get jobs before they even complete the course. Essec has a 100% career success rate for graduates in less than six months from completion of the Master’s, making this a great choice for career-focused students. Google, Amazon, JP Morgan Chase, and PwC count as some of the top recruiters that keep their eye on graduates from this program.


Admission requires a degree in a related technical subject, such as engineering, science, or business, from a leading university. That degree also impacts the version of the program you take, as a three-year BSc means you take the two-year Master’s, while those who have a four-year BSc under their belts take the one-year version, assuming they meet other requirements.


Data Science, Technology, and Innovation (University of Edinburgh)


With over 13,000 international students, the University of Edinburgh welcomes overseas students who want to expand their knowledge. Its MSc data science program is no different, buoyed by the fact that it’s an online course that doesn’t require you to move to the less-than-sunny climate of Edinburgh.


It’s a part-time program that relies on self-study, though it provides you with plenty of interactive resources to help along the way. The program is something of an umbrella course as it focuses on equipping students with the knowledge they need to enter the data science field across industries as diverse as medicine, science, and even the arts.


You’ll need the equivalent of an Upper Second-Class Honors degree that has elements of programming before applying. Ideally, you’ll also have evidence of mathematical skill, either through taking math classes in your undergraduate studies or by demonstrating the equivalent of an English A-Level in math through other qualifications.

 

Factors to Consider When Choosing an Artificial Intelligence Master’s


The five programs highlighted here all help you master artificial intelligence, with many also providing a practical grounding that puts you in good stead for your future career. But if you want to do more research (and that’s always a good idea), the following factors should be on your mind when checking other programs:

  • Course Curriculum – The content of your course impacts what you can do once you have your MSc under your belt. Focus on programs that teach tangible skills applicable to the field you wish to enter.
  • Faculty – Always check the credentials of the program’s creators and administrators, particularly in terms of industry experience, to confirm they have the relevant tools.
  • Tuition and Financial Aid – Master’s programs aren’t cheap (you’ll pay several thousand euros for even an online course), so check you can budget accordingly for the program. Many universities offer financial aid options, from scholarships to student loans, that can help in this area.
  • Location – The location isn’t really an issue if you take an online course, but it impacts your decision if you decide to study on-campus. Remember that you’ll spend at least a year of your life on the course (often two years) so you need to gel well with the place in which you’ll live.
  • Networking and Industry – Does the course provider have connections to major industry players? Does it offer career advice, ideally via a specialized office or program? These are the types of questions to ask when assessing a university’s capacity for networking and career advancement.


Become a Master in Artificial Intelligence


A Master’s degree in artificial intelligence is your entry point into a growing industry that’s already on the verge of taking the world by storm. That is, assuming you choose the right program. The five highlighted here all land in the “right program” category by virtue of the tuition you receive, the reputation of the institution, and their accessibility to European and overseas students.


Research each program (and any others you consider) extensively before making a choice. Remember that it’s not always about the course or its reputation – it’s about how the course helps you achieve the specific learning goals you need to achieve to get ahead in your chosen career.

Related posts

CCN: Australia Tightens Crypto Oversight as Exchanges Expand, Testing Industry’s Appetite for Regulation
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 3 min read

Source:

  • CCN, published on March 29th, 2025

By Kurt Robson

Over the past few months, Australia’s crypto industry has undergone a rapid transformation following the government’s proposal to establish a stricter set of digital asset regulations.

A series of recent enforcement measures and exchange launches highlight the growing maturation of Australia’s crypto landscape.

Experts remain divided on how the new rules will impact the country’s burgeoning digital asset industry.

New Crypto Regulation

On March 21, the Treasury Department said that crypto exchanges and custody services will now be classified under similar rules as other financial services in the country.

“Our legislative reforms will extend existing financial services laws to key digital asset platforms, but not to all of the digital asset ecosystem,” the Treasury said in a statement.

The rules impose similar regulations as other financial services in the country, such as obtaining a financial license, meeting minimum capital requirements, and safeguarding customer assets.

The proposal comes as Australian Prime Minister Anthony Albanese’s center-left Labor government prepares for a federal election on May 17.

Australia’s opposition party, led by Peter Dutton, has also vowed to make crypto regulation a top priority of the government’s agenda if it wins.

Australia’s Crypto Growth

Triple-A data shows that 9.6% of Australians already own digital assets, with some experts believing new rules will push further adoption.

Europe’s largest crypto exchange, WhiteBIT, announced it was entering the Australian market on Wednesday, March 26.

The company said that Australia was “an attractive landscape for crypto businesses” despite its complexity.

In March, Australia’s Swyftx announced it was acquiring New Zealand’s largest cryptocurrency exchange for an undisclosed sum.

According to the parties, the merger will create the second-largest platform in Australia by trading volume.

“Australia’s new regulatory framework is akin to rolling out the welcome mat for cryptocurrency exchanges,” Alexander Jader, professor of Digital Business at the Open Institute of Technology, told CCN.

“The clarity provided by these regulations is set to attract a wave of new entrants,” he added.

Jader said regulatory clarity was “the lifeblood of innovation.” He added that the new laws can expect an uptick “in both local and international exchanges looking to establish a foothold in the market.”

However, Zoe Wyatt, partner and head of Web3 and Disruptive Technology at Andersen LLP, believes that while the new rules will benefit more extensive exchanges looking for more precise guidelines, they will not “suddenly turn Australia into a global crypto hub.”

“The Web3 community is still largely looking to the U.S. in anticipation of a more crypto-friendly stance from the Trump administration,” Wyatt added.

Read the full article below:

Read the article
Agenda Digitale: Generative AI in the Enterprise – A Guide to Conscious and Strategic Use
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 6 min read

Source:


By Zorina Alliata, Professor of Responsible Artificial Intelligence e Digital Business & Innovation at OPIT – Open Institute of Technology

Integrating generative AI into your business means innovating, but also managing risks. Here’s how to choose the right approach to get value

The adoption of generative AI in the enterprise is growing rapidly, bringing innovation to decision-making, creativity and operations. However, to fully exploit its potential, it is essential to define clear objectives and adopt strategies that balance benefits and risks.

Over the course of my career, I have been fortunate to experience firsthand some major technological revolutions – from the internet boom to the “renaissance” of artificial intelligence a decade ago with machine learning.

However, I have never seen such a rapid rate of adoption as the one we are experiencing now, thanks to generative AI. Although this type of AI is not yet perfect and presents significant risks – such as so-called “hallucinations” or the possibility of generating toxic content – ​​it fills a real need, both for people and for companies, generating a concrete impact on communication, creativity and decision-making processes.

Defining the Goals of Generative AI in the Enterprise

When we talk about AI, we must first ask ourselves what problems we really want to solve. As a teacher and consultant, I have always supported the importance of starting from the specific context of a company and its concrete objectives, without inventing solutions that are as “smart” as they are useless.

AI is a formidable tool to support different processes: from decision-making to optimizing operations or developing more accurate predictive analyses. But to have a significant impact on the business, you need to choose carefully which task to entrust it with, making sure that the solution also respects the security and privacy needs of your customers .

Understanding Generative AI to Adopt It Effectively

A widespread risk, in fact, is that of being guided by enthusiasm and deploying sophisticated technology where it is not really needed. For example, designing a system of reviews and recommendations for films requires a certain level of attention and consumer protection, but it is very different from an X-ray reading service to diagnose the presence of a tumor. In the second case, there is a huge ethical and medical risk at stake: it is necessary to adapt the design, control measures and governance of the AI ​​to the sensitivity of the context in which it will be used.

The fact that generative AI is spreading so rapidly is a sign of its potential and, at the same time, a call for caution. This technology manages to amaze anyone who tries it: it drafts documents in a few seconds, summarizes or explains complex concepts, manages the processing of extremely complex data. It turns into a trusted assistant that, on the one hand, saves hours of work and, on the other, fosters creativity with unexpected suggestions or solutions.

Yet, it should not be forgotten that these systems can generate “hallucinated” content (i.e., completely incorrect), or show bias or linguistic toxicity where the starting data is not sufficient or adequately “clean”. Furthermore, working with AI models at scale is not at all trivial: many start-ups and entrepreneurs initially try a successful idea, but struggle to implement it on an infrastructure capable of supporting real workloads, with adequate governance measures and risk management strategies. It is crucial to adopt consolidated best practices, structure competent teams, define a solid operating model and a continuous maintenance plan for the system.

The Role of Generative AI in Supporting Business Decisions

One aspect that I find particularly interesting is the support that AI offers to business decisions. Algorithms can analyze a huge amount of data, simulating multiple scenarios and identifying patterns that are elusive to the human eye. This allows to mitigate biases and distortions – typical of exclusively human decision-making processes – and to predict risks and opportunities with greater objectivity.

At the same time, I believe that human intuition must remain key: data and numerical projections offer a starting point, but context, ethics and sensitivity towards collaborators and society remain elements of human relevance. The right balance between algorithmic analysis and strategic vision is the cornerstone of a responsible adoption of AI.

Industries Where Generative AI Is Transforming Business

As a professor of Responsible Artificial Intelligence and Digital Business & Innovation, I often see how some sectors are adopting AI extremely quickly. Many industries are already transforming rapidly. The financial sector, for example, has always been a pioneer in adopting new technologies: risk analysis, fraud prevention, algorithmic trading, and complex document management are areas where generative AI is proving to be very effective.

Healthcare and life sciences are taking advantage of AI advances in drug discovery, advanced diagnostics, and the analysis of large amounts of clinical data. Sectors such as retail, logistics, and education are also adopting AI to improve their processes and offer more personalized experiences. In light of this, I would say that no industry will be completely excluded from the changes: even “humanistic” professions, such as those related to medical care or psychological counseling, will be able to benefit from it as support, without AI completely replacing the relational and care component.

Integrating Generative AI into the Enterprise: Best Practices and Risk Management

A growing trend is the creation of specialized AI services AI-as-a-Service. These are based on large language models but are tailored to specific functionalities (writing, code checking, multimedia content production, research support, etc.). I personally use various AI-as-a-Service tools every day, deriving benefits from them for both teaching and research. I find this model particularly advantageous for small and medium-sized businesses, which can thus adopt AI solutions without having to invest heavily in infrastructure and specialized talent that are difficult to find.

Of course, adopting AI technologies requires companies to adopt a well-structured risk management strategy, covering key areas such as data protection, fairness and lack of bias in algorithms, transparency towards customers, protection of workers, definition of clear responsibilities regarding automated decisions and, last but not least, attention to environmental impact. Each AI model, especially if trained on huge amounts of data, can require significant energy consumption.

Furthermore, when we talk about generative AI and conversational models , we add concerns about possible inappropriate or harmful responses (so-called “hallucinations”), which must be managed by implementing filters, quality control and continuous monitoring processes. In other words, although AI can have disruptive and positive effects, the ultimate responsibility remains with humans and the companies that use it.

Read the full article below (in Italian):

Read the article