You may have heard the catchy phrase “data is the new oil” floating around. The implication is that data in the 21st century is what oil was in the 20th – the biggest industry around. And it’s true, as the sheer amount of data each person generates when they use the web, try out an app, or even buy from a store is digital “oil” for the companies collecting that data.


It’s also the fuel that powers the current (and growing) wave of artificial intelligence (AI) tools emerging in the market. From ChatGPT to the wave of text-to-speech tech flooding the market, everything hinges on information, and people who can harness that data through algorithms and machine learning practices are in high demand.


That’s where you can come in. By taking a Master’s degree in artificial intelligence online, you position yourself as one of the people who can help the new “digital oil” barons capitalize on their finds.


Factors to Consider When Choosing an Online AI Master’s Program


When choosing an artificial intelligence online Master’s, you have to consider more than the simple accessibility the course offers. These factors help you to weed out the also-ran programs from the ones that help you to advance your career:


  • Accreditation – Checks for accreditation come in two flavors. First, you need to check the program provider’s credentials to ensure the degree you get from your studies is worth the paper on which it’s printed. Second, you have to confirm the accreditation you receive is something that employers actually want to see.
  • Curriculum – What does your artificial intelligence online Master degree actually teach you? Answer that question and you can determine if the program serves the career goals you’ve set for yourself.
  • Faculty Expertise – On the ground level, you want tutors with plenty of teaching experience and their own degrees in AI-related subjects. But dig beyond that to also discover if they have direct experience working with AI in industry.
  • Program Format – A self-study artificial intelligence Master’s program’s online nature means they offer some degree of flexibility. But the course format plays a role in your decision, given that some rely solely on self-learning whereas others include examinations and live remote lectures.
  • Tuition and Financial Aid – A Master’s degree costs quite a bit depending on area (prices range from €1,000 to €20,000 per year), so you need to be in the appropriate financial position. Many universities offer financial aid, such as scholarships, grants, and payment programs, that may help here.
  • Career Support – You’re likely not studying for Master of artificial intelligence online for the joy of having a piece of paper on your wall. You want to build a career. Look for institutions that have strong alumni networks, connections within industry, and dedicated careers offices or services.

Top Online AI Master’s Programs Ranked


In choosing the best Master’s in artificial intelligence online programs, we looked at the above factors in addition to the key features of each program. That examination results in three online courses, each offering something a little different, that give you a solid grounding in AI.


Master in Applied Data Science & AI (OPIT)


Flexibility is the name of the game with OPIT’s program, as it’s fully remote and you get a choice between an 18-month course and a fast-tracked 12-month variant. The latter contains the same content as the former, with the student simply dedicating themselves to more intensive course requirements.


The program comes from an online institution that is accredited under both the Malta Qualification Framework and European Qualification Framework. As for the course itself, it’s the focus on real-life challenges in data science and AI that makes it so attractive. You don’t just learn theory. You discover how to apply that theory to the practical problems you’ll face when you enter the workforce.


OPIT has an admissions team who’ll guide you through getting onto the course, though you’ll need a BSc degree (in any field) and the equivalent of B2-level English proficiency to apply. If English isn’t your strong suit, OPIT also offers an in-house certification that you can take to get on the course. Financial aid is available through scholarships and funding, which you may need given that the program can cost up to €6,500, though discounts are available for those who apply early.



Master in Big Data, Artificial Intelligence, and Disruptive Technologies (Digital Age University)


If data is the new oil, Digital Age University’s program teaches you how to harness that oil and pump it in a way that makes you an attractive proposition for any employer. Key areas of study include the concept and utilization of Big Data (data analytics plays a huge role here), as well as the Python programming skills needed to create AI tools. You’ll learn more about machine learning models and get to grips with how AI is the big disruptor in modern business.


Tuition costs are reasonable, too, with this one-year course only costing €2,600. Digital Age University runs a tuition installment plan that lets you spread your costs out without worrying about being charged interest. Plus, your previous credentials may put you in line for a grant or scholarship that covers at least part of the cost. All first-year students are eligible for the 10% merit-based scholarship again, dependent on prior education). There’s also a 20% Global Scholarship available to students from Asia, Africa, the Middle East, and Latin American countries.


Speaking of credentials, you can showcase yours via the online application process or by scheduling a one-on-one call with one of the institution’s professors. The latter option is great if you’re conducting research and want to get a taste of what the faculty has to offer.


Master in Artificial Intelligence (Three Points Digital Business School)


Three Points Digital Business School sets its stall out early by pointing out that 83% of companies say they’ll create new jobs due to AI in the coming years. That’s its way of telling you that its business-focused AI course is the right choice for getting one of those jobs. After teaching the fundamentals of AI, the course moves into showing you how to create AI and machine learning models and, crucially, how to apply those models in practical settings. By the end, you’ll know how to program chatbots, virtual assistants, and similar AI-driven tools.


It’s the most expensive program on this list, clocking in at €7,500 for a one-year course that delivers 60 ECTS credits. However, it’s a course targeted at mature students (half of the current students are 40 years old), and it’s very much career-minded. That’s exemplified by Three Points’ annual ThinkDigital Summit, which puts some of the leading minds in AI and digital innovation in front of students.


Admission is tougher than for many other Master’s in artificial intelligence online programs as you go through an interview process in addition to submitting qualifications. Every candidate is manually assessed via committee, with your experience and business know-how playing as much of a role as any technical qualifications you have.


Tips for Success in an Online AI Master’s Program


Let’s assume you’ve successfully applied to an artificial intelligence online Master’s program. That’s the first step in a long, often complex, journey. Here are some tips to keep in mind and set up for the future:


  • Manage your time properly by scheduling your study, especially given that online courses rely on students having the discipline needed for self-learning.
  • Build relationships with faculty and peers who may be able to connect you to job opportunities or have ideas for starting their own businesses.
  • Stay up-to-date on what’s happening with AI because this high-paced industry can leave people who assume what they know is enough behind.
  • Pursue real-world experience wherever you can, both through the practical assessments a program offers and internship programs that you can add to your CV.

Career Opportunities With a Master’s in Artificial Intelligence


You need to know what sorts of roles are available on the digital “oil rigs” of today and the future. Those who have an artificial intelligence online Master degree take roles as varied as data analyst, software engineer, data scientist, and research scientist.


Better yet, those roles are spread across almost all industries. Grand View Research tells us that we can expect the AI market to enjoy a 37.3% compound annual growth rate between 2023 and 2030, with that growth making AI-based roles available on a near-constant basis. Salary expectations are likely to increase along with that growth, with the current average of around €91,000 for an artificial intelligence engineer (figures based on Germany’s job market) likely to be a baseline for future growth.



Find the Right Artificial Intelligence Master’s Programs Online


We’ve highlighted three online Master’s programs with a focus on AI in this article, each offering something different. OPIT’s course leans heavily into data science, giving you a specialization to go along with the foundational knowledge you’ll gain. Digital Age University’s program places more of a focus on Big Data, with Three Points Digital Business School living up to its name by taking a more business-oriented approach.


Whatever program you choose (and it could be one other than the three listed here), you must research the course based on the factors like credentials, course content, and quality of the faculty. Put plenty of time into this research process and you’re sure to find a program that aligns with your goals.

Related posts

Agenda Digitale: Regenerative Business – The Future of Business Is Net-Positive
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 8, 2025 5 min read

Source:


The net-positive model transcends traditional sustainability by aiming to generate more value than is consumed. Blockchain, AI, and IoT enable scalable circular models. Case studies demonstrate how profitability and positive impact combine to regenerate business and the environment.

By Francesco Derchi, Professor and Area Chair in Digital Business @ OPIT – Open Institute of Technology

In recent years, the word ” sustainability ” has become a firm fixture in the corporate lexicon. However, simply “doing no harm” is no longer enough: the climate crisis , social inequalities , and the erosion of natural resources require a change of pace. This is where the net-positive paradigm comes in , a model that isn’t content to simply reduce negative impacts, but aims to generate more social and environmental value than is consumed.

This isn’t about philanthropy, nor is it about reputational makeovers: net-positive is a strategic approach that intertwines economics, technology, and corporate culture. Within this framework, digitalization becomes an essential lever, capable of enabling regenerative models through circular platforms and exponential technologies.

Blockchain, AI, and IoT: The Technological Triad of Regeneration

Blockchain, Artificial Intelligence, and the Internet of Things represent the technological triad that makes this paradigm shift possible. Each addresses a critical point in regeneration.

Blockchain guarantees the traceability of material flows and product life cycles, allowing a regenerated dress or a bottle collected at sea to tell their story in a transparent and verifiable way.

Artificial Intelligence optimizes recovery and redistribution chains, predicting supply and demand, reducing waste and improving the efficiency of circular processes .

Finally, IoT enables real-time monitoring, from sensors installed at recycling plants to sharing mobility platforms, returning granular data for quick, informed decisions.

These integrated technologies allow us to move beyond linear vision and enable systems in which value is continuously regenerated.

New business models: from product-as-a-service to incentive tokens

Digital regeneration is n’t limited to the technological dimension; it’s redefining business models. More and more companies are adopting product-as-a-service approaches , transforming goods into services: from technical clothing rentals to pay-per-use for industrial machinery. This approach reduces resource consumption and encourages modular design, designed for reuse.

At the same time, circular marketplaces create ecosystems where materials, components, and products find new life. No longer waste, but input for other production processes. The logic of scarcity is overturned in an economy of regenerated abundance.

To complete the picture, incentive tokens — digital tools that reward virtuous behavior, from collecting plastic from the sea to reusing used clothing — activate global communities and catalyze private capital for regeneration.

Measuring Impact: Integrated Metrics for Net-Positiveness

One of the main obstacles to the widespread adoption of net-positive models is the difficulty of measuring their impact. Traditional profit-focused accounting systems are not enough. They need to be combined with integrated metrics that combine ESG and ROI, such as impact-weighted accounting or innovative indicators like lifetime carbon savings.

In this way, companies can validate the scalability of their models and attract investors who are increasingly attentive to financial returns that go hand in hand with social and environmental returns.

Case studies: RePlanet Energy, RIFO, and Ogyre

Concrete examples demonstrate how the combination of circular platforms and exponential technologies can generate real value. RePlanet Energy has defined its Massive Transformative Purpose as “Enabling Regeneration” and is now providing sustainable energy to Nigerian schools and hospitals, thanks in part to transparent blockchain-based supply chains and the active contribution of employees. RIFO, a Tuscan circular fashion brand, regenerates textile waste into new clothing, supporting local artisans and promoting workplace inclusion, with transparency in the production process as a distinctive feature and driver of loyalty. Ogyre incentivizes fishermen to collect plastic during their fishing trips; the recovered material is digitally tracked and transformed into new products, while the global community participates through tokens and environmental compensation programs.

These cases demonstrate how regeneration and profitability are not contradictory, but can actually feed off each other, strengthening the competitiveness of businesses.

From Net Zero to Net Positive: The Role of Massive Transformative Purpose

The crucial point lies in the distinction between sustainability and regeneration. The former aims for net zero, that is, reducing the impact until it is completely neutralized. The latter goes further, aiming for a net positive, capable of giving back more than it consumes.

This shift in perspective requires a strong Massive Transformative Purpose: an inspiring and shared goal that guides strategic choices, preventing technology from becoming a sterile end. Without this level of intentionality, even the most advanced tools risk turning into gadgets with no impact.

Regenerating business also means regenerating skills to train a new generation of professionals capable not only of using technologies but also of directing them towards regenerative business models. From this perspective, training becomes the first step in a transformation that is simultaneously cultural, economic, and social.

The Regenerative Future: Technology, Skills, and Shared Value

Digital regeneration is not an abstract concept, but a concrete practice already being tested by companies in Europe and around the world. It’s an opportunity for businesses to redefine their role, moving from mere economic operators to drivers of net-positive value for society and the environment.

The combination of blockchainAI, and IoT with circular product-as-a-service models, marketplaces, and incentive tokens can enable scalable and sustainable regenerative ecosystems. The future of business isn’t just measured in terms of margins, but in the ability to leave the world better than we found it.

Read the full article below (in Italian):

Read the article
Raconteur: AI on your terms – meet the enterprise-ready AI operating model
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 18, 2025 5 min read

Source:

  • Raconteur, published on November 06th, 2025

What is the AI technology operating model – and why does it matter? A well-designed AI operating model provides the structure, governance and cultural alignment needed to turn pilot projects into enterprise-wide transformation

By Duncan Jefferies

Many firms have conducted successful Artificial Intelligence (AI) pilot projects, but scaling them across departments and workflows remains a challenge. Inference costs, data silos, talent gaps and poor alignment with business strategy are just some of the issues that leave organisations trapped in pilot purgatory. This inability to scale successful experiments means AI’s potential for improving enterprise efficiency, decision-making and innovation isn’t fully realised. So what’s the solution?

Although it’s not a magic bullet, an AI operating model is really the foundation for scaling pilot projects up to enterprise-wide deployments. Essentially it’s a structured framework that defines how the organisation develops, deploys and governs AI. By bringing together infrastructure, data, people, and governance in a flexible and secure way, it ensures that AI delivers value at scale while remaining ethical and compliant.

“A successful AI proof-of-concept is like building a single race car that can go fast,” says Professor Yu Xiong, chair of business analytics at the UK-based Surrey Business School. “An efficient AI technology operations model, however, is the entire system – the processes, tools, and team structures – for continuously manufacturing, maintaining, and safely operating an entire fleet of cars.”

But while the importance of this framework is clear, how should enterprises establish and embed it?

“It begins with a clear strategy that defines objectives, desired outcomes, and measurable success criteria, such as model performance, bias detection, and regulatory compliance metrics,” says Professor Azadeh Haratiannezhadi, co-founder of generative AI company Taktify and professor of generative AI in cybersecurity at OPIT – the Open Institute of Technology.

Platforms, tools and MLOps pipelines that enable models to be deployed, monitored and scaled in a safe and efficient way are also essential in practical terms.

“Tools and infrastructure must also be selected with transparency, cost, and governance in mind,” says Efrain Ruh, continental chief technology officer for Europe at Digitate. “Crucially, organisations need to continuously monitor the evolving AI landscape and adapt their models to new capabilities and market offerings.”

An open approach

The most effective AI operating models are also founded on openness, interoperability and modularity. Open source platforms and tools provide greater control over data, deployment environments and costs, for example. These characteristics can help enterprises to avoid vendor lock-in, successfully align AI to business culture and values, and embed it safely into cross-department workflows.

“Modularity and platformisation…avoids building isolated ‘silos’ for each project,” explains professor Xiong. “Instead, it provides a shared, reusable ‘AI platform’ that integrates toolchains for data preparation, model training, deployment, monitoring, and retraining. This drastically improves efficiency and reduces the cost of redundant work.”

A strong data strategy is equally vital for ensuring high-quality performance and reducing bias. Ideally, the AI operating model should be cloud and LLM agnostic too.

“This allows organisations to coordinate and orchestrate AI agents from various sources, whether that’s internal or 3rd party,” says Babak Hodjat, global chief technology officer of AI at Cognizant. “The interoperability also means businesses can adopt an agile iterative process for AI projects that is guided by measuring efficiency, productivity, and quality gains, while guaranteeing trust and safety are built into all elements of design and implementation.”

A robust AI operating model should feature clear objectives for compliance, security and data privacy, as well as accountability structures. Richard Corbridge, chief information officer of Segro, advises organisations to: “Start small with well-scoped pilots that solve real pain points, then bake in repeatable patterns, data contracts, test harnesses, explainability checks and rollback plans, so learning can be scaled without multiplying risk. If you don’t codify how models are approved, deployed, monitored and retired, you won’t get past pilot purgatory.”

Of course, technology alone can’t drive successful AI adoption at scale: the right skills and culture are also essential for embedding AI across the enterprise.

“Multidisciplinary teams that combine technical expertise in AI, security, and governance with deep business knowledge create a foundation for sustainable adoption,” says Professor Haratiannezhadi. “Ongoing training ensures staff acquire advanced AI skills while understanding associated risks and responsibilities.”

Ultimately, an AI operating model is the playbook that enables an enterprise to use AI responsibly and effectively at scale. By drawing together governance, technological infrastructure, cultural change and open collaboration, it supports the shift from isolated experiments to the kind of sustainable AI capability that can drive competitive advantage.

In other words, it’s the foundation for turning ambition into reality, and finally escaping pilot purgatory for good.

 

Read the full article below:

Read the article