Any tendency or behavior of a consumer in the purchasing process in a certain period is known as customer behavior. For example, the last two years saw an unprecedented rise in online shopping. Such trends must be analyzed, but this is a nightmare for companies that try to take on the task manually. They need a way to speed up the project and make it more accurate.

Enter machine learning algorithms. Machine learning algorithms are methods AI programs use to complete a particular task. In most cases, they predict outcomes based on the provided information.

Without machine learning algorithms, customer behavior analyses would be a shot in the dark. These models are essential because they help enterprises segment their markets, develop new offerings, and perform time-sensitive operations without making wild guesses.

We’ve covered the definition and significance of machine learning, which only scratches the surface of this concept. The following is a detailed overview of the different types, models, and challenges of machine learning algorithms.

Types of Machine Learning Algorithms

A natural way to kick our discussion into motion is to dissect the most common types of machine learning algorithms. Here’s a brief explanation of each model, along with a few real-life examples and applications.

Supervised Learning

You can come across “supervised learning” at every corner of the machine learning realm. But what is it about, and where is it used?

Definition and Examples

Supervised machine learning is like supervised classroom learning. A teacher provides instructions, based on which students perform requested tasks.

In a supervised algorithm, the teacher is replaced by a user who feeds the system with input data. The system draws on this data to make predictions or discover trends, depending on the purpose of the program.

There are many supervised learning algorithms, as illustrated by the following examples:

  • Decision trees
  • Linear regression
  • Gaussian Naïve Bayes

Applications in Various Industries

When supervised machine learning models were invented, it was like discovering the Holy Grail. The technology is incredibly flexible since it permeates a range of industries. For example, supervised algorithms can:

  • Detect spam in emails
  • Scan biometrics for security enterprises
  • Recognize speech for developers of speech synthesis tools

Unsupervised Learning

On the other end of the spectrum of machine learning lies unsupervised learning. You can probably already guess the difference from the previous type, so let’s confirm your assumption.

Definition and Examples

Unsupervised learning is a model that requires no training data. The algorithm performs various tasks intuitively, reducing the need for your input.

Machine learning professionals can tap into many different unsupervised algorithms:

  • K-means clustering
  • Hierarchical clustering
  • Gaussian Mixture Models

Applications in Various Industries

Unsupervised learning models are widespread across a range of industries. Like supervised solutions, they can accomplish virtually anything:

  • Segment target audiences for marketing firms
  • Grouping DNA characteristics for biology research organizations
  • Detecting anomalies and fraud for banks and other financial enterprises

Reinforcement Learning

How many times have your teachers rewarded you for a job well done? By doing so, they reinforced your learning and encouraged you to keep going.

That’s precisely how reinforcement learning works.

Definition and Examples

Reinforcement learning is a model where an algorithm learns through experimentation. If its action yields a positive outcome, it receives an award and aims to repeat the action. Acts that result in negative outcomes are ignored.

If you want to spearhead the development of a reinforcement learning-based app, you can choose from the following algorithms:

  • Markov Decision Process
  • Bellman Equations
  • Dynamic programming

Applications in Various Industries

Reinforcement learning goes hand in hand with a large number of industries. Take a look at the most common applications:

  • Ad optimization for marketing businesses
  • Image processing for graphic design
  • Traffic control for government bodies

Deep Learning

When talking about machine learning algorithms, you also need to go through deep learning.

Definition and Examples

Surprising as it may sound, deep learning operates similarly to your brain. It’s comprised of at least three layers of linked nodes that carry out different operations. The idea of linked nodes may remind you of something. That’s right – your brain cells.

You can find numerous deep learning models out there, including these:

  • Recurrent neural networks
  • Deep belief networks
  • Multilayer perceptrons

Applications in Various Industries

If you’re looking for a flexible algorithm, look no further than deep learning models. Their ability to help businesses take off is second-to-none:

  • Creating 3D characters in video gaming and movie industries
  • Visual recognition in telecommunications
  • CT scans in healthcare

Popular Machine Learning Algorithms

Our guide has already listed some of the most popular machine-learning algorithms. However, don’t think that’s the end of the story. There are many other algorithms you should keep in mind if you want to gain a better understanding of this technology.

Linear Regression

Linear regression is a form of supervised learning. It’s a simple yet highly effective algorithm that can help polish any business operation in a heartbeat.

Definition and Examples

Linear regression aims to predict a value based on provided input. The trajectory of the prediction path is linear, meaning it has no interruptions. The two main types of this algorithm are:

  • Simple linear regression
  • Multiple linear regression

Applications in Various Industries

Machine learning algorithms have proved to be a real cash cow for many industries. That especially holds for linear regression models:

  • Stock analysis for financial firms
  • Anticipating sports outcomes
  • Exploring the relationships of different elements to lower pollution

Logistic Regression

Next comes logistic regression. This is another type of supervised learning and is fairly easy to grasp.

Definition and Examples

Logistic regression models are also geared toward predicting certain outcomes. Two classes are at play here: a positive class and a negative class. If the model arrives at the positive class, it logically excludes the negative option, and vice versa.

A great thing about logistic regression algorithms is that they don’t restrict you to just one method of analysis – you get three of these:

  • Binary
  • Multinomial
  • Ordinal

Applications in Various Industries

Logistic regression is a staple of many organizations’ efforts to ramp up their operations and strike a chord with their target audience:

  • Providing reliable credit scores for banks
  • Identifying diseases using genes
  • Optimizing booking practices for hotels

Decision Trees

You need only look out the window at a tree in your backyard to understand decision trees. The principle is straightforward, but the possibilities are endless.

Definition and Examples

A decision tree consists of internal nodes, branches, and leaf nodes. Internal nodes specify the feature or outcome you want to test, whereas branches tell you whether the outcome is possible. Leaf nodes are the so-called end outcome in this system.

The four most common decision tree algorithms are:

  • Reduction in variance
  • Chi-Square
  • ID3
  • Cart

Applications in Various Industries

Many companies are in the gutter and on the verge of bankruptcy because they failed to raise their services to the expected standards. However, their luck may turn around if they apply decision trees for different purposes:

  • Improving logistics to reach desired goals
  • Finding clients by analyzing demographics
  • Evaluating growth opportunities

Support Vector Machines

What if you’re looking for an alternative to decision trees? Support vector machines might be an excellent choice.

Definition and Examples

Support vector machines separate your data with surgically accurate lines. These lines divide the information into points close to and far away from the desired values. Based on their proximity to the lines, you can determine the outliers or desired outcomes.

There are as many support vector machines as there are specks of sand on Copacabana Beach (not quite, but the number is still considerable):

  • Anova kernel
  • RBF kernel
  • Linear support vector machines
  • Non-linear support vector machines
  • Sigmoid kernel

Applications in Various Industries

Here’s what you can do with support vector machines in the business world:

  • Recognize handwriting
  • Classify images
  • Categorize text

Neural Networks

The above deep learning discussion lets you segue into neural networks effortlessly.

Definition and Examples

Neural networks are groups of interconnected nodes that analyze training data previously provided by the user. Here are a few of the most popular neural networks:

  • Perceptrons
  • Convolutional neural networks
  • Multilayer perceptrons
  • Recurrent neural networks

Applications in Various Industries

Is your imagination running wild? That’s good news if you master neural networks. You’ll be able to utilize them in countless ways:

  • Voice recognition
  • CT scans
  • Commanding unmanned vehicles
  • Social media monitoring

K-means Clustering

The name “K-means” clustering may sound daunting, but no worries – we’ll break down the components of this algorithm into bite-sized pieces.

Definition and Examples

K-means clustering is an algorithm that categorizes data into a K-number of clusters. The information that ends up in the same cluster is considered related. Anything that falls beyond the limit of a cluster is considered an outlier.

These are the most widely used K-means clustering algorithms:

  • Hierarchical clustering
  • Centroid-based clustering
  • Density-based clustering
  • Distribution-based clustering

Applications in Various Industries

A bunch of industries can benefit from K-means clustering algorithms:

  • Finding optimal transportation routes
  • Analyzing calls
  • Preventing fraud
  • Criminal profiling

Principal Component Analysis

Some algorithms start from certain building blocks. These building blocks are sometimes referred to as principal components. Enter principal component analysis.

Definition and Examples

Principal component analysis is a great way to lower the number of features in your data set. Think of it like downsizing – you reduce the number of individual elements you need to manage to streamline overall management.

The domain of principal component analysis is broad, encompassing many types of this algorithm:

  • Sparse analysis
  • Logistic analysis
  • Robust analysis
  • Zero-inflated dimensionality reduction

Applications in Various Industries

Principal component analysis seems useful, but what exactly can you do with it? Here are a few implementations:

  • Finding patterns in healthcare records
  • Resizing images
  • Forecasting ROI

 

Challenges and Limitations of Machine Learning Algorithms

No computer science field comes without drawbacks. Machine learning algorithms also have their fair share of shortcomings:

  • Overfitting and underfitting – Overfitted applications fail to generalize training data properly, whereas under-fitted algorithms can’t map the link between training data and desired outcomes.
  • Bias and variance – Bias causes an algorithm to oversimplify data, whereas variance makes it memorize training information and fail to learn from it.
  • Data quality and quantity – Poor quality, too much, or too little data can render an algorithm useless.
  • Computational complexity – Some computers may not have what it takes to run complex algorithms.
  • Ethical considerations – Sourcing training data inevitably triggers privacy and ethical concerns.

Future Trends in Machine Learning Algorithms

If we had a crystal ball, it might say that future of machine learning algorithms looks like this:

  • Integration with other technologies – Machine learning may be harmonized with other technologies to propel space missions and other hi-tech achievements.
  • Development of new algorithms and techniques – As the amount of data grows, expect more algorithms to spring up.
  • Increasing adoption in various industries – Witnessing the efficacy of machine learning in various industries should encourage all other industries to follow in their footsteps.
  • Addressing ethical and social concerns – Machine learning developers may find a way to source information safely without jeopardizing someone’s privacy.

Machine Learning Can Expand Your Horizons

Machine learning algorithms have saved the day for many enterprises. By polishing customer segmentation, strategic decision-making, and security, they’ve allowed countless businesses to thrive.

With more machine learning breakthroughs in the offing, expect the impact of this technology to magnify. So, hit the books and learn more about the subject to prepare for new advancements.

Related posts

Cyber Threat Landscape 2024: Human-Centric Cyber Threats
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2024 9 min read

Human-centric cyber threats have long posed a serious issue for organizations. After all, humans are often the weakest link in the cybersecurity chain. Unfortunately, when artificial intelligence came into the mix, it only made these threats even more dangerous.

So, what can be done about these cyber threats now?

That’s precisely what we asked Tom Vazdar, the chair of the Enterprise Cybersecurity Master’s program at the Open Institute of Technology (OPIT), and Venicia Solomons, aka the “Cyber Queen.”

They dedicated a significant portion of their “Cyber Threat Landscape 2024: Navigating New Risks” master class to AI-powered human-centric cyber threats. So, let’s see what these two experts have to say on the topic.

Human-Centric Cyber Threats 101

Before exploring how AI impacted human-centric cyber threats, let’s go back to the basics. What are human-centric cyber threats?

As you might conclude from the name, human-centric cyber threats are cybersecurity risks that exploit human behavior or vulnerabilities (e.g., fear). Even if you haven’t heard of the term “human-centric cyber threats,” you’ve probably heard of (or even experienced) the threats themselves.

The most common of these threats are phishing attacks, which rely on deceptive emails to trick users into revealing confidential information (or clicking on malicious links). The result? Stolen credentials, ransomware infections, and general IT chaos.

How Has AI Impacted Human-Centric Cyber Threats?

AI has infiltrated virtually every cybersecurity sector. Social engineering is no different.

As mentioned, AI has made human-centric cyber threats substantially more dangerous. How? By making them difficult to spot.

In Venicia’s words, AI has allowed “a more personalized and convincing social engineering attack.”

In terms of email phishing, malicious actors use AI to write “beautifully crafted emails,” as Tom puts it. These emails contain no grammatical errors and can mimic the sender’s writing style, making them appear more legitimate and harder to identify as fraudulent.

These highly targeted AI-powered phishing emails are no longer considered “regular” phishing attacks but spear phishing emails, which are significantly more likely to fool their targets.

Unfortunately, it doesn’t stop there.

As AI technology advances, its capabilities go far beyond crafting a simple email. Venicia warns that AI-powered voice technology can even create convincing voice messages or phone calls that sound exactly like a trusted individual, such as a colleague, supervisor, or even the CEO of the company. Obey the instructions from these phone calls, and you’ll likely put your organization in harm’s way.

How to Counter AI-Powered Human-Centric Cyber Threats

Given how advanced human-centric cyber threats have gotten, one logical question arises – how can organizations counter them? Luckily, there are several ways to do this. Some rely on technology to detect and mitigate threats. However, most of them strive to correct what caused the issue in the first place – human behavior.

Enhancing Email Security Measures

The first step in countering the most common human-centric cyber threats is a given for everyone, from individuals to organizations. You must enhance your email security measures.

Tom provides a brief overview of how you can do this.

No. 1 – you need a reliable filtering solution. For Gmail users, there’s already one such solution in place.

No. 2 – organizations should take full advantage of phishing filters. Before, only spam filters existed, so this is a major upgrade in email security.

And No. 3 – you should consider implementing DMARC (Domain-based Message Authentication, Reporting, and Conformance) to prevent email spoofing and phishing attacks.

Keeping Up With System Updates

Another “technical” move you can make to counter AI-powered human-centric cyber threats is to ensure all your systems are regularly updated. Fail to keep up with software updates and patches, and you’re looking at a strong possibility of facing zero-day attacks. Zero-day attacks are particularly dangerous because they exploit vulnerabilities that are unknown to the software vendor, making them difficult to defend against.

Top of Form

Nurturing a Culture of Skepticism

The key component of the human-centric cyber threats is, in fact, humans. That’s why they should also be the key component in countering these threats.

At an organizational level, numerous steps are needed to minimize the risks of employees falling for these threats. But it all starts with what Tom refers to as a “culture of skepticism.”

Employees should constantly be suspicious of any unsolicited emails, messages, or requests for sensitive information.

They should always ask themselves – who is sending this, and why are they doing so?

This is especially important if the correspondence comes from a seemingly trusted source. As Tom puts it, “Don’t click immediately on a link that somebody sent you because you are familiar with the name.” He labels this as the “Rule No. 1” of cybersecurity awareness.

Growing the Cybersecurity Culture

The ultra-specific culture of skepticism will help create a more security-conscious workforce. But it’s far from enough to make a fundamental change in how employees perceive (and respond to) threats. For that, you need a strong cybersecurity culture.

Tom links this culture to the corporate culture. The organization’s mission, vision, statement of purpose, and values that shape the corporate culture should also be applicable to cybersecurity. Of course, this isn’t something companies can do overnight. They must grow and nurture this culture if they are to see any meaningful results.

According to Tom, it will probably take at least 18 months before these results start to show.

During this time, organizations must work on strengthening the relationships between every department, focusing on the human resources and security sectors. These two sectors should be the ones to primarily grow the cybersecurity culture within the company, as they’re well versed in the two pillars of this culture – human behavior and cybersecurity.

However, this strong interdepartmental relationship is important for another reason.

As Tom puts it, “[As humans], we cannot do anything by ourselves. But as a collective, with the help within the organization, we can.”

Staying Educated

The world of AI and cybersecurity have one thing in common – they never sleep. The only way to keep up with these ever-evolving worlds is to stay educated.

The best practice would be to gain a solid base by completing a comprehensive program, such as OPIT’s Enterprise Cybersecurity Master’s program. Then, it’s all about continuously learning about new developments, trends, and threats in AI and cybersecurity.

Conducting Regular Training

For most people, it’s not enough to just explain how human-centric cyber threats work. They must see them in action. Especially since many people believe that phishing attacks won’t happen to them or, if they do, they simply won’t fall for them. Unfortunately, neither of these are true.

Approximately 3.4 billion phishing emails are sent each day, and millions of them successfully bypass all email authentication methods. With such high figures, developing critical thinking among the employees is the No. 1 priority. After all, humans are the first line of defense against cyber threats.

But humans must be properly trained to counter these cyber threats. This training includes the organization’s security department sending fake phishing emails to employees to test their vigilance. Venicia calls employees who fall for these emails “clickers” and adds that no one wants to be a clicker. So, they do everything in their power to avoid falling for similar attacks in the future.

However, the key to successful employee training in this area also involves avoiding sending similar fake emails. If the company keeps trying to trick the employees in the same way, they’ll likely become desensitized and less likely to take real threats seriously.

So, Tom proposes including gamification in the training. This way, the training can be more engaging and interactive, encouraging employees to actively participate and learn. Interestingly, AI can be a powerful ally here, helping create realistic scenarios and personalized learning experiences based on employee responses.

Following in the Competitors’ Footsteps

When it comes to cybersecurity, it’s crucial to be proactive rather than reactive. Even if an organization hasn’t had issues with cyberattacks, it doesn’t mean it will stay this way. So, the best course of action is to monitor what competitors are doing in this field.

However, organizations shouldn’t stop with their competitors. They should also study other real-world social engineering incidents that might give them valuable insights into the tactics used by the malicious actors.

Tom advises visiting the many open-source databases reporting on these incidents and using the data to build an internal educational program. This gives organizations a chance to learn from other people’s mistakes and potentially prevent those mistakes from happening within their ecosystem.

Stay Vigilant

It’s perfectly natural for humans to feel curiosity when it comes to new information, anxiety regarding urgent-looking emails, and trust when seeing a familiar name pop up on the screen. But in the world of cybersecurity, these basic human emotions can cause a lot of trouble. That is, at least, when humans act on them.

So, organizations must work on correcting human behaviors, not suppressing basic human emotions. By doing so, they can help employees develop a more critical mindset when interacting with digital communications. The result? A cyber-aware workforce that’s well-equipped to recognize and respond to phishing attacks and other cyber threats appropriately.

Read the article
Cyber Threat Landscape 2024: The AI Revolution in Cybersecurity
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2024 9 min read

There’s no doubt about it – artificial intelligence has revolutionized almost every aspect of modern life. Healthcare, finance, and manufacturing are just some of the sectors that have been virtually turned upside down by this powerful new force. Cybersecurity also ranks high on this list.

But as much as AI can benefit cybersecurity, it also presents new challenges. Or – to be more direct –new threats.

To understand just how serious these threats are, we’ve enlisted the help of two prominent figures in the cybersecurity world – Tom Vazdar and Venicia Solomons. Tom is the chair of the Master’s Degree in Enterprise Cybersecurity program at the Open Institute of Technology (OPIT). Venicia, better known as the “Cyber Queen,” runs a widely successful cybersecurity community looking to empower women to succeed in the industry.

Together, they held a master class titled “Cyber Threat Landscape 2024: Navigating New Risks.” In this article, you get the chance to hear all about the double-edged sword that is AI in cybersecurity.

How Can Organizations Benefit From Using AI in Cybersecurity?

As with any new invention, AI has primarily been developed to benefit people. In the case of AI, this mainly refers to enhancing efficiency, accuracy, and automation in tasks that would be challenging or impossible for people to perform alone.

However, as AI technology evolves, its potential for both positive and negative impacts becomes more apparent.

But just because the ugly side of AI has started to rear its head more dramatically, it doesn’t mean we should abandon the technology altogether. The key, according to Venicia, is in finding a balance. And according to Tom, this balance lies in treating AI the same way you would cybersecurity in general.

Keep reading to learn what this means.

Top of Form

Implement a Governance Framework

In cybersecurity, there is a governance framework called ISO/IEC 27000, whose goal is to provide a systematic approach to managing sensitive company information, ensuring it remains secure. A similar framework has recently been created for AI— ISO/IEC 42001.

Now, the trouble lies in the fact that many organizations “don’t even have cybersecurity, not to speak artificial intelligence,” as Tom puts it. But the truth is that they need both if they want to have a chance at managing the risks and complexities associated with AI technology, thus only reaping its benefits.

Implement an Oversight Mechanism

Fearing the risks of AI in cybersecurity, many organizations chose to forbid the usage of this technology outright within their operations. But by doing so, they also miss out on the significant benefits AI can offer in enhancing cybersecurity defenses.

So, an all-out ban on AI isn’t a solution. A well-thought-out oversight mechanism is.

According to Tom, this control framework should dictate how and when an organization uses cybersecurity and AI and when these two fields are to come in contact. It should also answer the questions of how an organization governs AI and ensures transparency.

With both of these frameworks (governance and oversight), it’s not enough to simply implement new mechanisms. Employees should also be educated and regularly trained to uphold the principles outlined in these frameworks.

Control the AI (Not the Other Way Around!)

When it comes to relying on AI, one principle should be every organization’s guiding light. Control the AI; don’t let the AI control you.

Of course, this includes controlling how the company’s employees use AI when interacting with client data, business secrets, and other sensitive information.

Now, the thing is – people don’t like to be controlled.

But without control, things can go off the rails pretty quickly.

Tom gives just one example of this. In 2022, an improperly trained (and controlled) chatbot gave an Air Canada customer inaccurate information and a non-existing discount. As a result, the customer bought a full-price ticket. A lawsuit ensued, and in 2024, the court ruled in the customer’s favor, ordering Air Canada to pay compensation.

This case alone illustrates one thing perfectly – you must have your AI systems under control. Tom hypothesizes that the system was probably affordable and easy to implement, but it eventually cost Air Canada dearly in terms of financial and reputational damage.

How Can Organizations Protect Themselves Against AI-Driven Cyberthreats?

With well-thought-out measures in place, organizations can reap the full benefits of AI in cybersecurity without worrying about the threats. But this doesn’t make the threats disappear. Even worse, these threats are only going to get better at outsmarting the organization’s defenses.

So, what can the organizations do about these threats?

Here’s what Tom and Venicia suggest.

Fight Fire With Fire

So, AI is potentially attacking your organization’s security systems? If so, use AI to defend them. Implement your own AI-enhanced threat detection systems.

But beware – this isn’t a one-and-done solution. Tom emphasizes the importance of staying current with the latest cybersecurity threats. More importantly – make sure your systems are up to date with them.

Also, never rely on a single control system. According to our experts, “layered security measures” are the way to go.

Never Stop Learning (and Training)

When it comes to AI in cybersecurity, continuous learning and training are of utmost importance – learning for your employees and training for the AI models. It’s the only way to ensure all system aspects function properly and your employees know how to use each and every one of them.

This approach should also alleviate one of the biggest concerns regarding an increasing AI implementation. Namely, employees fear that they will lose their jobs due to AI. But the truth is, the AI systems need them just as much as they need those systems.

As Tom puts it, “You need to train the AI system so it can protect you.”

That’s why studying to be a cybersecurity professional is a smart career move.

However, you’ll want to find a program that understands the importance of AI in cybersecurity and equips you to handle it properly. Get a master’s degree in Enterprise Security from OPIT, and that’s exactly what you’ll get.

Join the Bigger Fight

When it comes to cybersecurity, transparency is key. If organizations fail to report cybersecurity incidents promptly and accurately, they not only jeopardize their own security but also that of other organizations and individuals. Transparency builds trust and allows for collaboration in addressing cybersecurity threats collectively.

So, our experts urge you to engage in information sharing and collaborative efforts with other organizations, industry groups, and governmental bodies to stay ahead of threats.

How Has AI Impacted Data Protection and Privacy?

Among the challenges presented by AI, one stands out the most – the potential impact on data privacy and protection. Why? Because there’s a growing fear that personal data might be used to train large AI models.

That’s why European policymakers sprang into action and introduced the Artificial Intelligence Act in March 2024.

This regulation, implemented by the European Parliament, aims to protect fundamental rights, democracy, the rule of law, and environmental sustainability from high-risk AI. The act is akin to the well-known General Data Protection Regulation (GDPR) passed in 2016 but exclusively targets the use of AI. The good news for those fearful of AI’s potential negative impact is that every requirement imposed by this act is backed up with heavy penalties.

But how can organizations ensure customers, clients, and partners that their data is fully protected?

According to our experts, the answer is simple – transparency, transparency, and some more transparency!

Any employed AI system must be designed in a way that doesn’t jeopardize anyone’s privacy and freedom. However, it’s not enough to just design the system in such a way. You must also ensure all the stakeholders understand this design and the system’s operation. This includes providing clear information about the data being collected, how it’s being used, and the measures in place to protect it.

Beyond their immediate group of stakeholders, organizations also must ensure that their data isn’t manipulated or used against people. Tom gives an example of what must be avoided at all costs. Let’s say a client applies for a loan in a financial institution. Under no circumstances should that institution use AI to track the client’s personal data and use it against them, resulting in a loan ban. This hypothetical scenario is a clear violation of privacy and trust.

And according to Tom, “privacy is more important than ever.” The same goes for internal ethical standards organizations must develop.

Keeping Up With Cybersecurity

Like most revolutions, AI has come in fast and left many people (and organizations) scrambling to keep up. However, those who recognize that AI isn’t going anywhere have taken steps to embrace it and fully benefit from it. They see AI for what it truly is – a fundamental shift in how we approach technology and cybersecurity.

Those individuals have also chosen to advance their knowledge in the field by completing highly specialized and comprehensive programs like OPIT’s Enterprise Cybersecurity Master’s program. Coincidentally, this is also the program where you get to hear more valuable insights from Tom Vazdar, as he has essentially developed this course.

Read the article