In a database, you have entities (which have attributes), and relationships between those entities. Managing them is key to preventing chaos from engulfing your database, which is where the concept of keys comes in. These unique identifiers enable you to pick specific rows in an entity set, as well as define their relationships to rows in other entity sets, allowing your database to handle complex computations.
Let’s explore keys in DBMS (database management systems) in more detail, before digging into everything you need to know about the most important keys – primary keys.
Understanding Keys in DBMS
Keys in DBMS are attributes that you use to identify specific rows inside a table, in addition to finding the relation between two tables. For example, let’s say you have a table for students, with that table recording each student’s “ID Number,” “Name,” “Address,” and “Teacher” as attributes. If you want to identify a specific student in the table, you’ll need to use one of these attributes as a key that allows you to pull the student’s record from your database. In this case “ID Number” is likely the best choice because it’s a unique attribute that only applies to a single student.
Types of Keys in DBMS
Beyond the basics of serving as unique identifiers for rows in a database, keys in DBMS can take several forms:
- Primary Keys – An attribute that is present in the table for all of the records it contains, with each instance of that attribute being unique to the record. The previously-mentioned “ID Number” for students is a great example, as no student can have the same number as another student.
- Foreign Key – Foreign keys allow you to define and establish relationships between a pair of tables. If Table A needs to refer to the primary key in Table B, you’ll use a foreign key in Table A so you have values in that table to match those in Table B.
- Unique Key – These are very similar to primary keys in that both contain unique identifiers for the records in a table. The only difference is that a unique key can contain a null value, whereas a primary key can’t.
- Candidate Key – Though you may have picked a unique attribute to serve as your primary key, there may be other candidates within a table. Coming back to the student example, you may record the phone numbers and email addresses of your students, which can be as unique as the student ID assigned to the individual. These candidate keys are also unique identifiers, allowing them to be used in tandem with a primary key to identify a specific row in a table.
- Composite Key – If you have attributes that wouldn’t be unique when taken alone, but can be combined to form a unique identifier for a record, you have a composite key.
- Super Key – This term refers to the collection of attributes that uniquely identify a record, meaning it’s a combination of candidate keys. Just like an employer sifting through job candidates to find the perfect person, you’ll sift through your super key set to choose the ideal primary key amongst your candidate keys.
So, why are keys in DBMS so important?
Keys ensure you maintain data integrity across all of the tables that make up your database. Without them, the relationships between each table become messy hodgepodges, creating the potential for duplicate records and errors that deliver inaccurate reports from the database. Having unique identifiers (in the form of keys) allows you to be certain that any record you pull, and the relationships that apply to that record, are accurate and unrepeated.
Primary Key Essentials
As mentioned, any unique attribute in a table can serve as a primary key, though this doesn’t mean that every unique attribute is a great choice. The following characteristics help you to define the perfect primary key.
Uniqueness
If your primary key is repeatable across records, it can’t serve as a unique identifier for a single record. For example, our student table may have multiple people named “John,” so you can’t use the “Name” attribute to find a specific student. You need something unique to that student, such as the previously mentioned ID number.
Non-Null Values
Primary keys must always contain a value, else you risk losing records in a table because you have no way of calling upon them. This need for non-null values can be used to eliminate some candidates from primary key content. For instance, it’s feasible (though unlikely) that a student won’t have an email address, creating the potential for null values that mean the email address attribute can’t be a primary key.
Immutability
A primary key that can change over time is a key that can cause confusion. Immutability is the term used for any attribute that’s unchanging to the point where it’s an evergreen attribute that you can use to identify a specific record forever.
Minimal
Ideally, one table should have one attribute that serves as its primary key, which is where the term “minimal” comes in. It’s possible for a table to have a composite or super key set, though both create the possibility of confusion and data integrity issues.
The Importance of a Primary Key in DBMS
We can distill the reason why having a primary key in DBMS for each of your tables is important into the following reasons:
- You can use a primary key to identify each unique record in a table, meaning no multi-result returns to your database searches.
- Having a primary key means a record can’t be repeated in the table.
- Primary keys make data retrieval more efficient because you can use a single attribute for searches rather than multiple.
Functions of Primary Keys
Primary keys in DBMS serve several functions, each of which is critical to your DBMS.
Data Identification
Imagine walking into a crowded room and shouting out a name. The odds are that several people (all of whom have the same name) will turn their heads to look at you. That’s basically what you’re doing if you try to pull records from a table without using a primary key.
A primary key in DBMS serves as a unique identifier that you can use to pull specific records. Coming back to the student example mentioned earlier, a “Student ID” is only applicable to a single student, making it a unique identifier you can use to find that student in your database.
Ensure Data Integrity
Primary keys protect data integrity in two ways.
First, they prevent duplicate records from building up inside a single table, ensuring you don’t get multiple instances of the same record. Second, they ensure referential integrity, which is the term used to describe what happens when one table in your database needs to refer to the records stored in another table.
For example, let’s say you have tables for “Students” and “Teachers” in your database. The primary keys assigned to your students and teachers allow you to pull individual records as needed from each table. But every “Teacher” has multiple “Students” in their class. So, your primary key from the “Students” table is used as a foreign key in the “Teachers” table, allowing you to denote the one-to-many relationship between a teacher and their class of students. That foreign key also ensures referential integrity because it contains the unique identifiers for students, which you can look up in your “Students” table.
Data Retrieval
If you need to pull a specific record from a table, you can’t rely on attributes that can repeat across several records in that table. Again, the “Name” example highlights the problem here, as several people could have the same name. You need a unique identifier for each record so you can retrieve a single record from a huge set without having to pore through hundreds (or even thousands) of records.
Best Practices for Primary Key Selection
Now that you understand how primary keys in DBMS work, here are some best practices for selecting the right primary key for your table:
- Choose Appropriate Attributes as Candidates – If the attribute isn’t unique to each record, or it can contain a null value (as is the case with email addresses and phone numbers), it’s not a good candidate for a primary key.
- Avoid Using Sensitive Information – Using personal or sensitive information as a primary key creates a security risk because anybody who cracks your database could use that information for other purposes. Make your primary keys unique, and only applicable, to your database, which allows you to encrypt any sensitive information stored in your tables.
- Consider Surrogate Keys – Some tables don’t have natural attributes that you can use as primary keys. In these cases, you can create a primary key out of thin air and assign it to each record. The “Student ID” referenced earlier is a great example, as students entering a school don’t come with their own ID numbers. Those numbers are given to the student (or simply used in the database that collects their data), making them surrogate keys.
- Ensure Primary Key Stability – Any attribute that can change isn’t suitable for use as a primary key because it causes stability issues. Names, email addresses, phone numbers, and even bank account details are all things that can change, making them unsuitable. Evergreen and unchanging is the way to go with primary keys.
Choose the Right Keys for Your Database
You need to understand the importance of a primary key in DBMS (or multiple primary keys when you have several tables) so you can define the relationships between tables and identify unique records inside your tables. Without primary keys, you’ll find it much harder to run reports because you won’t feel confident in the accuracy of the data returned. Each search may pull up duplicate or incorrect records because of a lack of unique identifiers.
Thankfully, many of the tables you create will have attributes that lend themselves well to primary key status. And even when that isn’t the case, you can use surrogate keys in DBMS to assign primary keys to your tables. Experiment with your databases, testing different potential primary keys to see what works best for you.
Related posts
Soon, we will be launching four new Degrees for AY24-25 at OPIT – Open Institute of Technology
I want to offer a behind-the-scenes look at the Product Definition process that has shaped these upcoming programs.
🚀 Phase 1: Discovery (Late May – End of July)
Our journey began with intensive brainstorming sessions with OPIT’s Academic Board (Francesco Profumo, Lorenzo Livi, Alexiei Dingli, Andrea Pescino, Rosario Maccarrone) . We also conducted 50+ interviews with tech and digital entrepreneurs (both from startups and established firms), academics and students. Finally, we deep-dived into the “Future of Jobs 2023” report by the World Economic Forum and other valuable research.
🔍 Phase 2: Selection – Crafting Our Roadmap (July – August)
Our focus? Introducing new degrees addressing critical workforce shortages and upskilling/reskilling needs for the next 5-10 years, promising significant societal impact and a broad market reach.
Our decision? To channel our energies on full BScs and MScs, and steer away from shorter courses or corporate-focused offerings. This aligns perfectly with our core mission.
💡 Focus Areas Unveiled!
We’re thrilled to concentrate on pivotal fields like:
- Cybersecurity
- Advanced AI
- Digital Business
- Metaverse & Gaming
- Cloud Computing (less “glamorous”, but market demand is undeniable).
🎓 Phase 3: Definition – Shaping the Degrees (August – November)
With an expert in each of the above fields, and with the strong collaboration of our Academic Director, Prof. Lorenzo Livi , we embarked on a rigorous “drill-down process”. Our goal? To meld modern theoretical knowledge with cutting-edge competencies and skills. This phase included interviewing over 60+ top academics, industry professionals, and students and get valuable, program-specific, insights from our Marketing department.
🌟 Phase 4: Accreditation and Launch – The Final Stretch
We’re currently in the accreditation process, gearing up for the launch. The focus is now shifting towards marketing, working closely with Greta Maiocchi and her Marketing and Admissions team. Together, we’re translating our new academic offering into a compelling value proposition for the market.
Stay tuned for more updates!
Far from being a temporary educational measure that came into its own during the pandemic, online education is providing students from all over the world with new ways to learn. That’s proven by statistics from Oxford Learning College, which point out that over 100 million students are now enrolled in some form of online course.
The demand for these types of courses clearly exists.
In fact, the same organization indicates that educational facilities that introduce online learning see a 42% increase in income – on average – suggesting that the demand is there.
Enter the Open Institute of Technology (OPIT).
Delivering three online courses – a Bachelor’s degree in computer science and two Master’s degrees – with more to come, OPIT is positioning itself as a leader in the online education space. But why is that? After all, many institutions are making the jump to e-learning, so what separates OPIT from the pack?
Here, you’ll discover the answers as you delve into the five reasons why you should trust OPIT for your online education.
Reason 1 – A Practical Approach
OPIT focuses on computer science education – a field in which theory often dominates the educational landscape. The organization’s Rector, Professor Francesco Profumo, makes this clear in a press release from June 2023. He points to a misalignment between what educators are teaching computer science students and what the labor market actually needs from those students as a key problem.
“The starting point is the awareness of the misalignment,” he says when talking about how OPIT structures its online courses. “That so-called mismatch is generated by too much theory and too little practical approach.” In other words, students in many classes spend far too much time learning the “hows” and “whys” behind computerized systems without actually getting their hands dirty with real work that gives them practical experience in using those systems.
OPIT takes a different approach.
It has developed a didactic approach that focuses far more on the practical element than other courses. That approach is delivered through a combination of classroom sessions – such as live lessons and masterclasses – and practical work offered through quizzes and exercises that mimic real-world situations.
An OPIT student doesn’t simply learn how computers work. They put their skills into practice through direct programming and application, equipping them with skills that are extremely attractive to major employers in the tech field and beyond.
Reason 2 – Flexibility Combined With Support
Flexibility in how you study is one of the main benefits of any online course.
You control when you learn and how you do it, creating an environment that’s beneficial to your education rather than being forced into a classroom setting with which you may not feel comfortable. This is hardly new ground. Any online educational platform can claim that it offers “flexibility” simply because it provides courses via the web.
Where OPIT differs is that it combines that flexibility with unparalleled support bolstered by the experiences of teachers employed from all over the world. The founder and director of OPIT, Riccardo Ocleppo, sheds more light on this difference in approach when he says, “We believe that education, even if it takes place physically at a distance, must guarantee closeness on all other aspects.” That closeness starts with the support offered to students throughout their entire study period.
Tutors are accessible to students at all times. Plus, every participant benefits from weekly professor interactions, ensuring they aren’t left feeling stuck on an educational “island” and have to rely solely on themselves for their education. OPIT further counters the potential isolation that comes with online learning with a Student Support team to guide students through any difficulties they may have with their courses.
In this focus on support, OPIT showcases one of its main differences from other online platforms.
You don’t simply receive course material before being told to “get on with it.” You have the flexibility to learn at your own pace while also having a support structure that serves as a foundation for that learning.
Reason 3 – OPIT Can Adapt to Change Quickly
The field of computer science is constantly evolving.
In the 2020s alone, we’ve seen the rise of generative AI – spurred on by the explosive success of services like ChatGPT – and how those new technologies have changed the way that people use computers.
Riccardo Ocleppo has seen the impact that these constant evolutions have had on students. Before founding OPIT, he was an entrepreneur who received first-hand experience of the fact that many traditional educational institutions struggle to adapt to change.
“Traditional educational institutions are very slow to adapt to this wave of new technologies and trends within the educational sector,” he says. He points to computer science as a particular issue, highlighting the example of a board in Italy of which he is a member. That board – packed with some of the country’s most prestigious tech universities – spent three years eventually deciding to add just two modules on new and emerging technologies to their study programs.
That left Ocleppo feeling frustrated.
When he founded OPIT, he did so intending to make it an adaptable institution in which courses were informed by what the industry needs. Every member of its faculty is not only a superb teacher but also somebody with experience working in industry. Speaking of industry, OPIT collaborates with major companies in the tech field to ensure its courses deliver the skills that those organizations expect from new candidates.
This confronts frustration on both sides. For companies, an OPIT graduate is one for which they don’t need to bridge a “skill gap” between what they’ve learned and what the company needs. For you, as a student, it means that you’re developing skills that make you a more desirable prospect once you have your degree.
Reason 4 – OPIT Delivers Tier One Education
Despite their popularity, online courses can still carry a stigma of not being “legitimate” in the face of more traditional degrees. Ocleppo is acutely aware of this fact, which is why he’s quick to point out that OPIT always aims to deliver a Tier One education in the computer science field.
“That means putting together the best professors who create superb learning material, all brought together with a teaching methodology that leverages the advancements made in online teaching,” he says.
OPIT’s degrees are all accredited by the European Union to support this approach, ensuring they carry as much weight as any other European degree. It’s accredited by both the European Qualification Framework (EQF) and the Malta Qualification Framework (MQF), with all of its courses having full legal value throughout Europe.
It’s also here where we see OPIT’s approach to practicality come into play via its course structuring.
Take its Bachelor’s degree in computer science as an example.
Yes, that course starts with a focus on theoretical and foundational knowledge. Building a computer and understanding how the device processes instructions is vital information from a programming perspective. But once those foundations are in place, OPIT delivers on its promises of covering the most current topics in the field.
Machine learning, cloud computing, data science, artificial intelligence, and cybersecurity – all valuable to employers – are taught at the undergraduate level. Students benefit from a broader approach to computer science than most institutions are capable of, rather than bogging them down in theory that serves little practical purpose.
Reason 5 – The Learning Experience
Let’s wrap up by honing in on what it’s actually like for students to learn with OPIT.
After all, as Ocleppo points out, one of the main challenges with online education is that students rarely have defined checkpoints to follow. They can start feeling lost in the process, confronted with a metaphorical ocean of information they need to learn, all in service of one big exam at the end.
Alternatively, some students may feel the temptation to not work through the materials thoroughly, focusing instead on passing a final exam. The result is that those students may pass, but they do so without a full grasp of what they’ve learned – a nightmare for employers who already have skill gaps to handle.
OPIT confronts both challenges by focusing on a continuous learning methodology. Assessments – primarily practical – take place throughout the course, serving as much-needed checkpoints for evaluating progress. When combined with the previously mentioned support that OPIT offers, this approach has led to courses that are created from scratch in service of the student’s actual needs.
Choose OPIT for Your Computer Science Education
At OPIT, the focus lies as much on helping students to achieve their dream careers as it does on teaching them. All courses are built collaboratively. With a dedicated faculty combined with major industry players, such as Google and Microsoft, it delivers materials that bridge the skill gap seen in the computer science field today.
There’s also more to come.
Beyond the three degrees OPIT offers, the institution plans to add more. Game development, data science, and cloud computing, to name a few, will receive dedicated degrees in the coming months, accentuating OPIT’s dedication to adapting to the continuous evolution of the computer science industry. Discover OPIT today – your journey into computing starts with the best online education institution available.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: