

Did you know that machines can learn, too, similarly to humans?
In machine learning, software applications can be trained to parse data, learn from it, and then make informed decisions based on their findings. This outcome prediction has proven to be invaluable in numerous industries, including IT (malware threat detection), healthcare (disease diagnosis and prognosis), manufacturing (business process automation), and finance (fraud detection).
The importance of machine learning in today’s technology-driven world can’t be understated. So, if you’re considering a career in data science, software engineering, or artificial intelligence (AI), this is the skill to learn.
Fortunately, learning this skill is now accessible to almost anyone. Just go online and find a machine learning course for beginners.
We’ve gathered our three favorites to help you narrow your search (and avoid wasting time on subpar courses). We aim to make it easy to select the perfect free machine learning course and crush it online.
Criteria for Selecting the Top Beginner-Friendly Online Picks
The internet offers seemingly endless learning resources. This is undoubtedly great news, as it levels the playing field for eager learners worldwide. But be careful; not all online resources will be valuable to you. Some will just waste your time.
So, how can you comb through the sea of content and find a course worth pursuing? By knowing precisely what you’re looking for, of course. Check out our selection criteria to track down a great online course.
Course Content and Structure
Most courses you find online will come with a description. The more detailed it is, the better. By carefully reading the description, you’ll better understand what the course covers and how it is structured.
These descriptions can sometimes read fluffy to get as many learners to apply. But try to look past the buzzwords and extract only the essential information – what the syllabus looks like, how many hours it takes to complete the course, and how the lessons are spaced.
If there are video lessons, check previews to ensure you’ll only work with high-quality video and audio outputs throughout the course.
Instructor Expertise and Teaching Style
If the course’s content is sound, it’s time to move on to the person (or people) who will present it to you. After all, anyone can read a bunch of words from a book. It takes an experienced and knowledgeable instructor to help you truly understand the learning material.
So, before signing up for the course, do a little research on the instructor. Check out their bio to learn about their expertise and experience in the field.
Beyond that, play a lecture or two to ensure their teaching style suits you. Having issues with the little things like their voice or body language can impact your concentration and, in turn, your success.
Platform Features and User Experience
Now that we’ve covered what you’re learning and who you’re learning it from, the only question is where the learning will take place.
Take a more in-depth look at the platform hosting your chosen course. Ensure it offers a seamless user experience, as glitches and downtime aren’t exactly ideal for a learning environment.
Also, the more exciting features the platform has, the easier it will be to stick to the course. Different learning material formats, interactive elements, discussion forums, and progress tracking are just some of the features that can significantly improve your learning experience.
Community Support and Resources
The lack of personal interaction in online learning can make you feel like you’re all alone. This can be incredibly challenging if you’re struggling with a lesson or a part of the course. So, when looking for the perfect online class, ensure you’ll get a chance to interact with other learners or even experts in the field.
Asking questions, sharing insights, collecting feedback, and receiving support and motivation should be a part of every learner’s journey.
Cost and Accessibility
If your chosen course checks all your boxes, don’t celebrate just yet. First, check whether you can access it and how much it costs.
Access can sometimes be limited by your country or device, so make sure nothing stands between you and learning online.
As for the cost, you’ll find plenty of high-quality courses free of charge. If there is a fee to pay, check whether you can purchase just the individual class or you have to subscribe to the platform. The latter approach is better for those who want to acquire multiple skills and work on their education long-term.
Top Beginner-Friendly Online Picks for Free Machine Learning Courses
Here are the top three beginner-friendly machine learning courses we’ve chosen based on the selection criteria above. Each one should help you learn the fundamentals of this field and how to use machine learning effectively as a skill.
Supervised Machine Learning: Regression and Classification by Andrew Ng
If you want to learn more about machine learning, why not consult one of its leading figures? That’s what you can do if you take this course. You’ll learn from Andrew Ng, a prominent computer scientist and a pioneer in machine learning and AI. All things considered, it’s no wonder this is probably the most popular free machine learning course online.
During this course, you’ll master the key concepts of machine learning (supervised and unsupervised learning and best practices) and learn how to apply them in practice. Some of the skills you’ll gain include:
- Linear regression
- Logistic regression for classification
- Gradient descent
- Regularization to avoid overfitting
This is one of the best beginner courses for entering the machine learning field. It offers abundant knowledge, a flexible schedule, and resettable deadlines. The only downside is that you must enroll in the entire specialization to receive a certificate upon completion.
Machine Learning Crash Course by Google
Google is a major disruptor in the AI industry. So, a free machine learning course offered by this tech giant is seriously a big deal. As the name suggests, this is a crash course, so expect a fast-paced and intense approach to machine learning.
Throughout 25 lessons, you’ll learn about specific machine-learning areas through video lectures from Google researchers, real-world case studies, written guides, and hands-on exercises.
The key topics this course covers include:
- A deep dive into neural networks
- The inner workings of gradient descent
- Model training and evaluation
- The importance of loss functions
The course is relatively short (15 hours) yet informative, so it can be an excellent choice for those pursuing machine learning while having a job. However, if you’re an absolute beginner, you’ll have to do some reading before starting the course, which some may view as a downside.
Practical Machine Learning With Scikit-Learn by Adam Eubanks
If you’re looking for something even shorter than Google’s Crash Course, you’ll love this course on Udemy. You’ll learn the most powerful machine-learning algorithms in a little over an hour. This course focuses on Scikit-Learn, a Python machine-learning library ideal for beginners.
Here are some of the algorithms this course covers:
- Linear regression
- Polynomial regression
- Multiple linear regression
- Logistic regression
- Support vector machines
- Decision trees
This is the perfect course for kick-starting your machine-learning journey. However, some learners might find it too limited in scope. Also, the course lacks interaction with the instructor, which might be a deal breaker for some learners.
Tips for Success in Learning Machine Learning Online
Imagine going through all the trouble of finding the perfect machine learning free online course, only to abandon it halfway through. There’s no judgment here, of course. We know how difficult it can be to persevere with learning outside the traditional classroom and school system.
So, here are some tips to help you complete a machine learning course for beginners triumphantly:
- Set clear goals and expectations. Before starting the course, remind yourself of why you’re doing it and how it fits your career development. Don’t just buy the course for the sake of buying it; these impulse purchases rarely translate to success.
- Dedicate consistent time for learning. Like with many things in life, consistency is key. But this time, there’s no one to keep you on track besides yourself. So, work on your self-discipline and commit to regular study sessions.
- Engage with the community and seek help when needed. Online learning can feel like an isolating experience. But it doesn’t have to, provided you’ve selected the right platform. If you ever feel stuck, don’t hesitate to seek help from the community. These simple interactions will help you stay motivated and focused.
- Apply learned concepts to real-world projects. As soon as you gain a fundamental understanding of machine learning, try to put this knowledge to practice. Seeing how the theory you’re learning sets you up for success is a great incentive to keep learning.
- Continuously update skills and knowledge. Are you done with the machine learning course for beginners? Great, it’s time to look for a more advanced one. Continuously learning and improving your skills is the only way to stay on top.
Considerable Knowledge at No Cost
You won’t make a mistake regardless of whether you put your trust in Andrew Ng or Adam Eubanks or go the Google route. What you will do is gain valuable knowledge about an even more valuable skill: machine learning.
If you want to master your knowledge of machine learning, consider pursuing a Bachelor’s degree in Modern Computer Science from the Open Institute of Technology. The syllabus includes two courses focusing on machine learning and numerous others that will skyrocket your career opportunities.
Related posts

During the Open Institute of Technology’s (OPIT’s) 2025 Graduation Day, we conducted interviews with many recent graduates to understand why they chose OPIT, how they felt about the course, and what advice they might give to others considering studying at OPIT.
Karina is an experienced FinTech professional who is an experienced integration manager, ERP specialist, and business analyst. She was interested in learning AI applications to expand her career possibilities, and she chose OPIT’s MSc in Applied Data Science & AI.
In the interview, Karina discussed why she chose OPIT over other courses of study, the main challenges she faced when completing the course while working full-time, and the kind of support she received from OPIT and other students.
Why Study at OPIT?
Karina explained that she was interested in enhancing her AI skills to take advantage of a major emerging technology in the FinTech field. She said that she was looking for a course that was affordable and that she could manage alongside her current demanding job. Karina noted that she did not have the luxury to take time off to become a full-time student.
She was principally looking at courses in the United States and the United Kingdom. She found that comprehensive courses were expensive, costing upwards of $50,000, and did not always offer flexible study options. Meanwhile, flexible courses that she could complete while working offered excellent individual modules, but didn’t always add up to a coherent whole. This was something that set OPIT apart.
Karina admits that she was initially skeptical when she encountered OPIT because, at the time, it was still very new. OPIT only started offering courses in September 2023, so 2025 was the first cohort of graduates.
Nevertheless, Karina was interested in OPIT’s affordable study options and the flexibility of fully remote learning and part-time options. She said that when she looked into the course, she realized that it aligned very closely with what she was looking for.
In particular, Karina noted that she was always wary of further study because of the level of mathematics required in most computer science courses. She appreciated that OPIT’s course focused on understanding the underlying core principles and the potential applications, rather than the fine programming and mathematical details. This made the course more applicable to her professional life.
OPIT’s MSc in Applied Data Science & AI
The course Karina took was OPIT’s MSc in Applied Data Science & AI. It is a three- to four-term course (13 weeks), which can take between one and two years to complete, depending on the pace you choose and whether you choose the 90 or 120 ECTS option. As well as part-time, there are also regular and fast-track options.
The course is fully online and completed in English, with an accessible tuition fee of €2,250 per term, which is €6,750 for the 90 ECTS course and €9,000 for the 120 ECTS course. Payment plans are available as are scholarships, and discounts are available if you pay the full amount upfront.
It matches foundational tech modules with business application modules to build a strong foundation. It then ends with a term-long research project culminating in a thesis. Internships with industry partners are encouraged and facilitated by OPIT, or professionals can work on projects within their own companies.
Entry requirements include a bachelor’s degree or equivalency in any field, including non-tech fields, and English proficiency to a B2 level.
Faculty members include Pierluigi Casale, a former Data Science and AI Innovation Officer for the European Parliament and Principal Data Scientist at TomTom; Paco Awissi, former VP at PSL Group and an instructor at McGill University; and Marzi Bakhshandeh, a Senior Product Manager at ING.
Challenges and Support
Karina shared that her biggest challenge while studying at OPIT was time management and juggling the heavy learning schedule with her hectic job. She admitted that when balancing the two, there were times when her social life suffered, but it was doable. The key to her success was organization, time management, and the support of the rest of the cohort.
According to Karina, the cohort WhatsApp group was often a lifeline that helped keep her focused and optimistic during challenging times. Sharing challenges with others in the same boat and seeing the example of her peers often helped.
The OPIT Cohort
OPIT has a wide and varied cohort with over 300 students studying remotely from 78 countries around the world. Around 80% of OPIT’s students are already working professionals who are currently employed at top companies in a variety of industries. This includes global tech firms such as Accenture, Cisco, and Broadcom, FinTech companies like UBS, PwC, Deloitte, and the First Bank of Nigeria, and innovative startups and enterprises like Dynatrace, Leonardo, and the Pharo Foundation.
Study Methods
This cohort meets in OPIT’s online classrooms, powered by the Canvas Learning Management System (LMS). One of the world’s leading teaching and learning software, it acts as a virtual hub for all of OPIT’s academic activities, including live lectures and discussion boards. OPIT also uses the same portal to conduct continuous assessments and prepare students before final exams.
If you want to collaborate with other students, there is a collaboration tab where you can set up workrooms, and also an official Slack platform. Students tend to use WhatsApp for other informal communications.
If students need additional support, they can book an appointment with the course coordinator through Canvas to get advice on managing their workload and balancing their commitments. Students also get access to experienced career advisor Mike McCulloch, who can provide expert guidance.
A Supportive Environment
These services and resources create a supportive environment for OPIT students, which Karina says helped her throughout her course of study. Karina suggests organization and leaning into help from the community are the best ways to succeed when studying with OPIT.

In April 2025, Professor Francesco Derchi from the Open Institute of Technology (OPIT) and Chair of OPIT’s Digital Business programs entered the online classroom to talk about the current state of the Metaverse and what companies can do to engage with this technological shift. As an expert in digital marketing, he is well-placed to talk about how brands can leverage the Metaverse to further company goals.
Current State of the Metaverse
Francesco started by exploring what the Metaverse is and the rocky history of its development. Although many associate the term Metaverse with Mark Zuckerberg’s 2021 announcement of Meta’s pivot toward a virtual immersive experience co-created by users, the concept actually existed long before. In his 1992 novel Snow Crash, author Neal Stephenson described a very similar concept, with people using avatars to seamlessly step out of the real world and into a highly connected virtual world.
Zuckerberg’s announcement was not even the start of real Metaverse-like experiences. Released in 2003, Second Life is a virtual world in which multiple users come together and engage through avatars. Participation in Second Life peaked at about one million active users in 2007. Similarly, Minecraft, released in 2011, is a virtual world where users can explore and build, and it offers multiplayer options.
What set Zuckerberg’s vision apart from these earlier iterations is that he imagined a much broader virtual world, with almost limitless creation and interaction possibilities. However, this proved much more difficult in practice.
Both Meta and Microsoft started investing significantly in the Metaverse at around the same time, with Microsoft completing its acquisition of Activision Blizzard – a gaming company that creates virtual world games such as World of Warcraft – in 2023 and working with Epic Games to bring Fortnite to their Xbox cloud gaming platform.
But limited adoption of new Metaverse technology saw both Meta and Microsoft announce major layoffs and cutbacks on their Metaverse investments.
Open Garden Metaverse
One of the major issues for the big Metaverse vision is that it requires an open-garden Metaverse. Matthew Ball defined this kind of Metaverse in his 2022 book:
“A massively scaled and interoperable network of real-time rendered 3D virtual worlds that can be experienced synchronously and persistently by an effectively unlimited number of users with an individual sense of presence, and with continuity of data, such as identity, history, entitlements, objects, communication, and payments.”
This vision requires an open Metaverse, a virtual world beyond any single company’s walled garden that allows interaction across platforms. With the current technology and state of the market, this is believed to be at least 10 years away.
With that in mind, Zuckerberg and Meta have pivoted away from expanding their Metaverse towards delivering devices such as AI glasses with augmented reality capabilities and virtual reality headsets.
Nevertheless, the Metaverse is still expanding today, but within walled garden contexts. Francesco pointed to Pokémon Go and Roblox as examples of Metaverse-esque words with enormous engagement and popularity.
Brands Engaging with the Metaverse: Nike Case Study
What does that mean for brands? Should they ignore the Metaverse until it becomes a more realistic proposition, or should they be establishing their Meta presence now?
Francesco used Nike’s successful approach to Meta engagement to show how brands can leverage the Metaverse today.
He pointed out that this was a strategic move from Nike to protect their brand. As a cultural phenomenon, people will naturally bring their affinity with Nike into the virtual space with them. If Nike doesn’t constantly monitor that presence, they can lose control of it. Rather than see this as a threat, Nike identified it as an opportunity. As people engage more online, their virtual appearance can become even more important than their physical appearance. Therefore, there is a space for Nike to occupy in this virtual world as a cultural icon.
Nike chose an ad hoc approach, going to users where they are and providing experiences within popular existing platforms.
As more than 1.5 million people play Fortnite every day, Nike started there, first selling a variety of virtual shoes that users can buy to kit out their avatars.
Roblox similarly has around 380 million monthly active users, so Nike entered the space and created NIKELAND, a purpose-built virtual area that offers a unique brand experience in the virtual world. For example, during NBA All-Star Week, LeBron James visited NIKELAND, where he coached and engaged with players. During the FIFA World Cup, NIKELAND let users claim two free soccer jerseys to show support for their favorite teams. According to statistics published at the end of 2023, in less than two years, NIKELAND had more than 34.9 million visitors, with over 13.4 billion hours of engagement and $185 million in NFT (non-fungible tokens or unique digital assets) sales.
Final Thoughts
Francesco concluded by discussing that while Nike has been successful in the Metaverse, this is not necessarily a success that will be simple for smaller brands to replicate. Nike was successful in the virtual world because they are a cultural phenomenon, and the Metaverse is a combination of technology and culture.
Therefore, brands today must decide how to engage with the current state of the Metaverse and prepare for its potential future expansion. Because existing Metaverses are walled gardens, brands also need to decide which Metaverses warrant investment or whether it is worth creating their own dedicated platforms. This all comes down to an appetite for risk.
Facing these types of challenges comes down to understanding the business potential of new technologies and making decisions based on risk and opportunity. OPIT’s BSc in Digital Business and MSc in Digital Business and Innovation help develop these skills, with Francesco also serving as program chair.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: