The future looks bright for the data science sector, with the U.S. Bureau of Labor Statistics stating that there were 113,300 jobs in the industry in 2021. Growth is also a major plus. The same resource estimates a 36% increase in data scientist roles between 2021 and 2031, which outpaces the national average considerably. Combine that with attractive salaries (Indeed says the average salary for a data scientist is $130,556) and you have an industry that’s ready and waiting for new talent.

That’s where you come in, as you’re exploring the possibilities in data science and need to find the appropriate educational tools to help you enter the field. A Master’s degree may be a good choice, leading to the obvious question – do you need a Master’s for data science?

The Value of a Masters in Data Science

There’s plenty of value to committing the time (and money) to earning your data science Master’s degree:

  • In-depth knowledge and skills – A Master’s degree is a structured course that puts you in front of some of the leading minds in the field. You’ll develop very specific skills (most applying to the working world) and can access huge wellsprings of knowledge in the forms of your professors and their resources.
  • Networking opportunities – Access to professors (and similar professionals) enables you to build connections with people who can give you a leg up when you enter the working world. You’ll also work with other students, with your peers offering as much potential for startup ideas and new roles as your professors.
  • Increased job opportunities – With salaries in the $130,000 range, there’s clearly plenty of potential for a comfortable career pursuing a subject that you love. Having a Master’s degree in data science on your resume demonstrates that you’ve reached a certain skill threshold for employers, making them more likely to hire you.

Having said all of that, the answer to “do I need a Master’s for data science?” is “not necessarily.” There are actually some downsides to going down the formal studying route:

  • The time commitment – Data science programs vary in length, though you can expect to commit at least 12 months of your life to your studies. Most courses require about two years of full-time study, which is a substantial time commitment given that you’ve already earned a degree and have job opportunities waiting.
  • Your financial investment – A Master’s in data science can cost anywhere between about $10,000 for an online course to over $50,000 for courses from more prestigious institutions. For instance, Tufts University’s course requires a total investment of $54,304 if you wish to complete all of your credit hours.
  • Opportunity cost – When opportunity beckons, committing two more years to your studies may lead to you missing out. Say a friend has a great idea for a startup, or you’re offered a role at a prestigious company after completing your undergraduate studies. Saying “no” to those opportunities may come back to bite you if they’re not waiting for you when you complete your Master’s degree.

Alternatives to a Masters in Data Science

If spending time and money on earning a Master’s degree isn’t to your liking, there are some alternative ways to develop data science skills.

Self-Learning and Online Resources

With the web offering a world of information at your fingertips, self-learning is a viable option (assuming you get something to show for it). Options include the following:

  • Online courses and tutorials – The ability to learn at your own pace, rather than being tied into a multi-year degree, is the key benefit of online courses and tutorials. Some prestigious universities (including MIT and Harvard) even offer more bite-sized ways to get into data science. Reputation (both for the course and its providers) can be a problem, though, as some employers prefer candidates with more formal educations.
  • Books and articles – The seemingly old-school method of book learning can take you far when it comes to learning about the ins and outs of data science. While published books help with theory, articles can keep you abreast of the latest developments in the field. Unfortunately, listing a bunch of books and articles that you’ve read on a resume isn’t the same as having a formal qualification.
  • Data science competitions – Several organizations (such as Kaggle) offer data science competitions designed to test your skills. In addition to giving you the opportunity to wield your growing skillset, these competitions come with the dual benefits of prestige and prizes.

Bootcamps and Certificate Programs

Like the previously mentioned competitions, bootcamps offer intensive tests of your data science skills, with the added bonus of a job waiting for you at the end (in some cases). Think of them like cramming for an exam – you do a lot in a short time (often a few months) to get a reward at the end.

The prospect of landing a job after completing a bootcamp is great, but the study methods aren’t for everybody. If you thrive in a slower-paced environment, particularly one that allows you to expand your skillset gradually, an intensive bootcamp may be intimidating and counter to your educational needs.

Gaining Experience Through Internships and Entry-Level Positions

Any recent graduate who’s seen a job listing that asks for a degree and several years of experience can tell you how much employers value hands-on experience. That’s as true in data science as it is in any other field, which is where internships come in. An internship is an unpaid position (often with a prestigious company) that’s ideal for learning the workplace ropes and forming connections with people who can help you advance your career.

If an internship sounds right for you, consider these tips that may make them easier to find:

  • Check the job posting platforms – The likes of Indeed and LinkedIn are great places to find companies (and the people within them) who may offer internships. There are also intern-dedicated websites, such as, which focus specifically on this type of employment.
  • Meet the basic requirements – Most internships don’t require you to have formal qualifications, such as a Master’s degree, to apply. But by the same token, companies won’t accept you for a data science internship if you have no experience with computers. A solid understanding of major programming and scripting languages, such as Java, SQL, and C++, gives you a major head start. You’ve also got a better chance of landing a role if you enrolled in an undergraduate program (or have completed one) in computer science, math, or a similar field.
  • Check individual business websites – Not all companies run to LinkedIn or job posting sites when they advertise vacant positions. Some put those roles on their own websites, meaning a little more in-depth searching can pay off. Create a list of companies that you believe you’d enjoy working for and check their business websites to see if they’re offering internships via their sites.

Factors to Consider When Deciding if a Masters Is Necessary

You know that the answer to “Do you need a Master’s for data science?” is “no,” but there are downsides to the alternatives. Being able to prove your skills on a resume is a must, which the self-learning route doesn’t always provide, and some alternatives may be too fast-paced for those who want to take their time getting to grips with the subject. When making your choice, the following four factors should play into your decision-making

Personal Goals and Career Aspirations

The opportunity cost factor often comes into play here, as you may find that some entry-level roles for computer science graduates can “teach you as you go” when it comes to data science. Still, you may not want to feel like you’re stuck in a lower role for several years when you could advance faster with a Master’s under your belt. So, consider charting your ideal career course, with the positions that best align with your goals, to figure out if you’ll need a Master’s to get you to where you want to go.

Current Level of Education and Experience

Some of the options for getting into data science aren’t available to those with limited experience. For example, anybody can make their start with books and articles, which have no barrier to entry. But many internships require demonstrable proof that you understand various programming and scripting languages, with some also asking to see evidence of formal education. As for a Master’s degree, you’ll need a BSc in computer science (or an equivalent degree) to walk down that path.

Financial Considerations

Money makes the educational wheel turn, at least when it comes to formal education. As mentioned, a Master’s in data science can set you back up to $50,000, which may sting (and even be unfeasible) if you already have student loans to pay off for an undergraduate degree. Online courses are more cost-effective (and offer certification), while bootcamps and competitions can either pay you for learning or set you up in a career if you succeed.

Time Commitment and Flexibility

The simple question here is how long do you want to wait to start your career in data science? The patient person can afford to spend a couple of years earning their Master’s degree, and will benefit from having formal and respectable proof of their skills when they’re done. But if you want to get started right now, internships combined with more flexible online courses may provide a faster route to your goal.

A Master’s Degree – Do You Need It to Master Data Science?

Everybody’s answer is different when they ask themselves “do I need a Master’s in data science?” Some prefer the formalized approach that a Master’s offers, along with the exposure to industry professionals that may set them up for strong careers in the future. Others are less patient, preferring to quickly develop skills in a bootcamp, while yet others want a more free-form educational experience that is malleable to their needs and time constraints.

In the end, your circumstances, career goals, and educational preferences are the main factors when deciding which route to take. A Master’s degree is never a bad thing to have on your resume, but it’s not essential for a career in data science. Explore your options and choose whatever works best for you.

Related posts

Cyber Threat Landscape 2024: Human-Centric Cyber Threats
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2024 9 min read

Human-centric cyber threats have long posed a serious issue for organizations. After all, humans are often the weakest link in the cybersecurity chain. Unfortunately, when artificial intelligence came into the mix, it only made these threats even more dangerous.

So, what can be done about these cyber threats now?

That’s precisely what we asked Tom Vazdar, the chair of the Enterprise Cybersecurity Master’s program at the Open Institute of Technology (OPIT), and Venicia Solomons, aka the “Cyber Queen.”

They dedicated a significant portion of their “Cyber Threat Landscape 2024: Navigating New Risks” master class to AI-powered human-centric cyber threats. So, let’s see what these two experts have to say on the topic.

Human-Centric Cyber Threats 101

Before exploring how AI impacted human-centric cyber threats, let’s go back to the basics. What are human-centric cyber threats?

As you might conclude from the name, human-centric cyber threats are cybersecurity risks that exploit human behavior or vulnerabilities (e.g., fear). Even if you haven’t heard of the term “human-centric cyber threats,” you’ve probably heard of (or even experienced) the threats themselves.

The most common of these threats are phishing attacks, which rely on deceptive emails to trick users into revealing confidential information (or clicking on malicious links). The result? Stolen credentials, ransomware infections, and general IT chaos.

How Has AI Impacted Human-Centric Cyber Threats?

AI has infiltrated virtually every cybersecurity sector. Social engineering is no different.

As mentioned, AI has made human-centric cyber threats substantially more dangerous. How? By making them difficult to spot.

In Venicia’s words, AI has allowed “a more personalized and convincing social engineering attack.”

In terms of email phishing, malicious actors use AI to write “beautifully crafted emails,” as Tom puts it. These emails contain no grammatical errors and can mimic the sender’s writing style, making them appear more legitimate and harder to identify as fraudulent.

These highly targeted AI-powered phishing emails are no longer considered “regular” phishing attacks but spear phishing emails, which are significantly more likely to fool their targets.

Unfortunately, it doesn’t stop there.

As AI technology advances, its capabilities go far beyond crafting a simple email. Venicia warns that AI-powered voice technology can even create convincing voice messages or phone calls that sound exactly like a trusted individual, such as a colleague, supervisor, or even the CEO of the company. Obey the instructions from these phone calls, and you’ll likely put your organization in harm’s way.

How to Counter AI-Powered Human-Centric Cyber Threats

Given how advanced human-centric cyber threats have gotten, one logical question arises – how can organizations counter them? Luckily, there are several ways to do this. Some rely on technology to detect and mitigate threats. However, most of them strive to correct what caused the issue in the first place – human behavior.

Enhancing Email Security Measures

The first step in countering the most common human-centric cyber threats is a given for everyone, from individuals to organizations. You must enhance your email security measures.

Tom provides a brief overview of how you can do this.

No. 1 – you need a reliable filtering solution. For Gmail users, there’s already one such solution in place.

No. 2 – organizations should take full advantage of phishing filters. Before, only spam filters existed, so this is a major upgrade in email security.

And No. 3 – you should consider implementing DMARC (Domain-based Message Authentication, Reporting, and Conformance) to prevent email spoofing and phishing attacks.

Keeping Up With System Updates

Another “technical” move you can make to counter AI-powered human-centric cyber threats is to ensure all your systems are regularly updated. Fail to keep up with software updates and patches, and you’re looking at a strong possibility of facing zero-day attacks. Zero-day attacks are particularly dangerous because they exploit vulnerabilities that are unknown to the software vendor, making them difficult to defend against.

Top of Form

Nurturing a Culture of Skepticism

The key component of the human-centric cyber threats is, in fact, humans. That’s why they should also be the key component in countering these threats.

At an organizational level, numerous steps are needed to minimize the risks of employees falling for these threats. But it all starts with what Tom refers to as a “culture of skepticism.”

Employees should constantly be suspicious of any unsolicited emails, messages, or requests for sensitive information.

They should always ask themselves – who is sending this, and why are they doing so?

This is especially important if the correspondence comes from a seemingly trusted source. As Tom puts it, “Don’t click immediately on a link that somebody sent you because you are familiar with the name.” He labels this as the “Rule No. 1” of cybersecurity awareness.

Growing the Cybersecurity Culture

The ultra-specific culture of skepticism will help create a more security-conscious workforce. But it’s far from enough to make a fundamental change in how employees perceive (and respond to) threats. For that, you need a strong cybersecurity culture.

Tom links this culture to the corporate culture. The organization’s mission, vision, statement of purpose, and values that shape the corporate culture should also be applicable to cybersecurity. Of course, this isn’t something companies can do overnight. They must grow and nurture this culture if they are to see any meaningful results.

According to Tom, it will probably take at least 18 months before these results start to show.

During this time, organizations must work on strengthening the relationships between every department, focusing on the human resources and security sectors. These two sectors should be the ones to primarily grow the cybersecurity culture within the company, as they’re well versed in the two pillars of this culture – human behavior and cybersecurity.

However, this strong interdepartmental relationship is important for another reason.

As Tom puts it, “[As humans], we cannot do anything by ourselves. But as a collective, with the help within the organization, we can.”

Staying Educated

The world of AI and cybersecurity have one thing in common – they never sleep. The only way to keep up with these ever-evolving worlds is to stay educated.

The best practice would be to gain a solid base by completing a comprehensive program, such as OPIT’s Enterprise Cybersecurity Master’s program. Then, it’s all about continuously learning about new developments, trends, and threats in AI and cybersecurity.

Conducting Regular Training

For most people, it’s not enough to just explain how human-centric cyber threats work. They must see them in action. Especially since many people believe that phishing attacks won’t happen to them or, if they do, they simply won’t fall for them. Unfortunately, neither of these are true.

Approximately 3.4 billion phishing emails are sent each day, and millions of them successfully bypass all email authentication methods. With such high figures, developing critical thinking among the employees is the No. 1 priority. After all, humans are the first line of defense against cyber threats.

But humans must be properly trained to counter these cyber threats. This training includes the organization’s security department sending fake phishing emails to employees to test their vigilance. Venicia calls employees who fall for these emails “clickers” and adds that no one wants to be a clicker. So, they do everything in their power to avoid falling for similar attacks in the future.

However, the key to successful employee training in this area also involves avoiding sending similar fake emails. If the company keeps trying to trick the employees in the same way, they’ll likely become desensitized and less likely to take real threats seriously.

So, Tom proposes including gamification in the training. This way, the training can be more engaging and interactive, encouraging employees to actively participate and learn. Interestingly, AI can be a powerful ally here, helping create realistic scenarios and personalized learning experiences based on employee responses.

Following in the Competitors’ Footsteps

When it comes to cybersecurity, it’s crucial to be proactive rather than reactive. Even if an organization hasn’t had issues with cyberattacks, it doesn’t mean it will stay this way. So, the best course of action is to monitor what competitors are doing in this field.

However, organizations shouldn’t stop with their competitors. They should also study other real-world social engineering incidents that might give them valuable insights into the tactics used by the malicious actors.

Tom advises visiting the many open-source databases reporting on these incidents and using the data to build an internal educational program. This gives organizations a chance to learn from other people’s mistakes and potentially prevent those mistakes from happening within their ecosystem.

Stay Vigilant

It’s perfectly natural for humans to feel curiosity when it comes to new information, anxiety regarding urgent-looking emails, and trust when seeing a familiar name pop up on the screen. But in the world of cybersecurity, these basic human emotions can cause a lot of trouble. That is, at least, when humans act on them.

So, organizations must work on correcting human behaviors, not suppressing basic human emotions. By doing so, they can help employees develop a more critical mindset when interacting with digital communications. The result? A cyber-aware workforce that’s well-equipped to recognize and respond to phishing attacks and other cyber threats appropriately.

Read the article
Cyber Threat Landscape 2024: The AI Revolution in Cybersecurity
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2024 9 min read

There’s no doubt about it – artificial intelligence has revolutionized almost every aspect of modern life. Healthcare, finance, and manufacturing are just some of the sectors that have been virtually turned upside down by this powerful new force. Cybersecurity also ranks high on this list.

But as much as AI can benefit cybersecurity, it also presents new challenges. Or – to be more direct –new threats.

To understand just how serious these threats are, we’ve enlisted the help of two prominent figures in the cybersecurity world – Tom Vazdar and Venicia Solomons. Tom is the chair of the Master’s Degree in Enterprise Cybersecurity program at the Open Institute of Technology (OPIT). Venicia, better known as the “Cyber Queen,” runs a widely successful cybersecurity community looking to empower women to succeed in the industry.

Together, they held a master class titled “Cyber Threat Landscape 2024: Navigating New Risks.” In this article, you get the chance to hear all about the double-edged sword that is AI in cybersecurity.

How Can Organizations Benefit From Using AI in Cybersecurity?

As with any new invention, AI has primarily been developed to benefit people. In the case of AI, this mainly refers to enhancing efficiency, accuracy, and automation in tasks that would be challenging or impossible for people to perform alone.

However, as AI technology evolves, its potential for both positive and negative impacts becomes more apparent.

But just because the ugly side of AI has started to rear its head more dramatically, it doesn’t mean we should abandon the technology altogether. The key, according to Venicia, is in finding a balance. And according to Tom, this balance lies in treating AI the same way you would cybersecurity in general.

Keep reading to learn what this means.

Top of Form

Implement a Governance Framework

In cybersecurity, there is a governance framework called ISO/IEC 27000, whose goal is to provide a systematic approach to managing sensitive company information, ensuring it remains secure. A similar framework has recently been created for AI— ISO/IEC 42001.

Now, the trouble lies in the fact that many organizations “don’t even have cybersecurity, not to speak artificial intelligence,” as Tom puts it. But the truth is that they need both if they want to have a chance at managing the risks and complexities associated with AI technology, thus only reaping its benefits.

Implement an Oversight Mechanism

Fearing the risks of AI in cybersecurity, many organizations chose to forbid the usage of this technology outright within their operations. But by doing so, they also miss out on the significant benefits AI can offer in enhancing cybersecurity defenses.

So, an all-out ban on AI isn’t a solution. A well-thought-out oversight mechanism is.

According to Tom, this control framework should dictate how and when an organization uses cybersecurity and AI and when these two fields are to come in contact. It should also answer the questions of how an organization governs AI and ensures transparency.

With both of these frameworks (governance and oversight), it’s not enough to simply implement new mechanisms. Employees should also be educated and regularly trained to uphold the principles outlined in these frameworks.

Control the AI (Not the Other Way Around!)

When it comes to relying on AI, one principle should be every organization’s guiding light. Control the AI; don’t let the AI control you.

Of course, this includes controlling how the company’s employees use AI when interacting with client data, business secrets, and other sensitive information.

Now, the thing is – people don’t like to be controlled.

But without control, things can go off the rails pretty quickly.

Tom gives just one example of this. In 2022, an improperly trained (and controlled) chatbot gave an Air Canada customer inaccurate information and a non-existing discount. As a result, the customer bought a full-price ticket. A lawsuit ensued, and in 2024, the court ruled in the customer’s favor, ordering Air Canada to pay compensation.

This case alone illustrates one thing perfectly – you must have your AI systems under control. Tom hypothesizes that the system was probably affordable and easy to implement, but it eventually cost Air Canada dearly in terms of financial and reputational damage.

How Can Organizations Protect Themselves Against AI-Driven Cyberthreats?

With well-thought-out measures in place, organizations can reap the full benefits of AI in cybersecurity without worrying about the threats. But this doesn’t make the threats disappear. Even worse, these threats are only going to get better at outsmarting the organization’s defenses.

So, what can the organizations do about these threats?

Here’s what Tom and Venicia suggest.

Fight Fire With Fire

So, AI is potentially attacking your organization’s security systems? If so, use AI to defend them. Implement your own AI-enhanced threat detection systems.

But beware – this isn’t a one-and-done solution. Tom emphasizes the importance of staying current with the latest cybersecurity threats. More importantly – make sure your systems are up to date with them.

Also, never rely on a single control system. According to our experts, “layered security measures” are the way to go.

Never Stop Learning (and Training)

When it comes to AI in cybersecurity, continuous learning and training are of utmost importance – learning for your employees and training for the AI models. It’s the only way to ensure all system aspects function properly and your employees know how to use each and every one of them.

This approach should also alleviate one of the biggest concerns regarding an increasing AI implementation. Namely, employees fear that they will lose their jobs due to AI. But the truth is, the AI systems need them just as much as they need those systems.

As Tom puts it, “You need to train the AI system so it can protect you.”

That’s why studying to be a cybersecurity professional is a smart career move.

However, you’ll want to find a program that understands the importance of AI in cybersecurity and equips you to handle it properly. Get a master’s degree in Enterprise Security from OPIT, and that’s exactly what you’ll get.

Join the Bigger Fight

When it comes to cybersecurity, transparency is key. If organizations fail to report cybersecurity incidents promptly and accurately, they not only jeopardize their own security but also that of other organizations and individuals. Transparency builds trust and allows for collaboration in addressing cybersecurity threats collectively.

So, our experts urge you to engage in information sharing and collaborative efforts with other organizations, industry groups, and governmental bodies to stay ahead of threats.

How Has AI Impacted Data Protection and Privacy?

Among the challenges presented by AI, one stands out the most – the potential impact on data privacy and protection. Why? Because there’s a growing fear that personal data might be used to train large AI models.

That’s why European policymakers sprang into action and introduced the Artificial Intelligence Act in March 2024.

This regulation, implemented by the European Parliament, aims to protect fundamental rights, democracy, the rule of law, and environmental sustainability from high-risk AI. The act is akin to the well-known General Data Protection Regulation (GDPR) passed in 2016 but exclusively targets the use of AI. The good news for those fearful of AI’s potential negative impact is that every requirement imposed by this act is backed up with heavy penalties.

But how can organizations ensure customers, clients, and partners that their data is fully protected?

According to our experts, the answer is simple – transparency, transparency, and some more transparency!

Any employed AI system must be designed in a way that doesn’t jeopardize anyone’s privacy and freedom. However, it’s not enough to just design the system in such a way. You must also ensure all the stakeholders understand this design and the system’s operation. This includes providing clear information about the data being collected, how it’s being used, and the measures in place to protect it.

Beyond their immediate group of stakeholders, organizations also must ensure that their data isn’t manipulated or used against people. Tom gives an example of what must be avoided at all costs. Let’s say a client applies for a loan in a financial institution. Under no circumstances should that institution use AI to track the client’s personal data and use it against them, resulting in a loan ban. This hypothetical scenario is a clear violation of privacy and trust.

And according to Tom, “privacy is more important than ever.” The same goes for internal ethical standards organizations must develop.

Keeping Up With Cybersecurity

Like most revolutions, AI has come in fast and left many people (and organizations) scrambling to keep up. However, those who recognize that AI isn’t going anywhere have taken steps to embrace it and fully benefit from it. They see AI for what it truly is – a fundamental shift in how we approach technology and cybersecurity.

Those individuals have also chosen to advance their knowledge in the field by completing highly specialized and comprehensive programs like OPIT’s Enterprise Cybersecurity Master’s program. Coincidentally, this is also the program where you get to hear more valuable insights from Tom Vazdar, as he has essentially developed this course.

Read the article