The future looks bright for the data science sector, with the U.S. Bureau of Labor Statistics stating that there were 113,300 jobs in the industry in 2021. Growth is also a major plus. The same resource estimates a 36% increase in data scientist roles between 2021 and 2031, which outpaces the national average considerably. Combine that with attractive salaries (Indeed says the average salary for a data scientist is $130,556) and you have an industry that’s ready and waiting for new talent.

That’s where you come in, as you’re exploring the possibilities in data science and need to find the appropriate educational tools to help you enter the field. A Master’s degree may be a good choice, leading to the obvious question – do you need a Master’s for data science?

The Value of a Masters in Data Science

There’s plenty of value to committing the time (and money) to earning your data science Master’s degree:

  • In-depth knowledge and skills – A Master’s degree is a structured course that puts you in front of some of the leading minds in the field. You’ll develop very specific skills (most applying to the working world) and can access huge wellsprings of knowledge in the forms of your professors and their resources.
  • Networking opportunities – Access to professors (and similar professionals) enables you to build connections with people who can give you a leg up when you enter the working world. You’ll also work with other students, with your peers offering as much potential for startup ideas and new roles as your professors.
  • Increased job opportunities – With salaries in the $130,000 range, there’s clearly plenty of potential for a comfortable career pursuing a subject that you love. Having a Master’s degree in data science on your resume demonstrates that you’ve reached a certain skill threshold for employers, making them more likely to hire you.

Having said all of that, the answer to “do I need a Master’s for data science?” is “not necessarily.” There are actually some downsides to going down the formal studying route:

  • The time commitment – Data science programs vary in length, though you can expect to commit at least 12 months of your life to your studies. Most courses require about two years of full-time study, which is a substantial time commitment given that you’ve already earned a degree and have job opportunities waiting.
  • Your financial investment – A Master’s in data science can cost anywhere between about $10,000 for an online course to over $50,000 for courses from more prestigious institutions. For instance, Tufts University’s course requires a total investment of $54,304 if you wish to complete all of your credit hours.
  • Opportunity cost – When opportunity beckons, committing two more years to your studies may lead to you missing out. Say a friend has a great idea for a startup, or you’re offered a role at a prestigious company after completing your undergraduate studies. Saying “no” to those opportunities may come back to bite you if they’re not waiting for you when you complete your Master’s degree.

Alternatives to a Masters in Data Science

If spending time and money on earning a Master’s degree isn’t to your liking, there are some alternative ways to develop data science skills.

Self-Learning and Online Resources

With the web offering a world of information at your fingertips, self-learning is a viable option (assuming you get something to show for it). Options include the following:

  • Online courses and tutorials – The ability to learn at your own pace, rather than being tied into a multi-year degree, is the key benefit of online courses and tutorials. Some prestigious universities (including MIT and Harvard) even offer more bite-sized ways to get into data science. Reputation (both for the course and its providers) can be a problem, though, as some employers prefer candidates with more formal educations.
  • Books and articles – The seemingly old-school method of book learning can take you far when it comes to learning about the ins and outs of data science. While published books help with theory, articles can keep you abreast of the latest developments in the field. Unfortunately, listing a bunch of books and articles that you’ve read on a resume isn’t the same as having a formal qualification.
  • Data science competitions – Several organizations (such as Kaggle) offer data science competitions designed to test your skills. In addition to giving you the opportunity to wield your growing skillset, these competitions come with the dual benefits of prestige and prizes.

Bootcamps and Certificate Programs

Like the previously mentioned competitions, bootcamps offer intensive tests of your data science skills, with the added bonus of a job waiting for you at the end (in some cases). Think of them like cramming for an exam – you do a lot in a short time (often a few months) to get a reward at the end.

The prospect of landing a job after completing a bootcamp is great, but the study methods aren’t for everybody. If you thrive in a slower-paced environment, particularly one that allows you to expand your skillset gradually, an intensive bootcamp may be intimidating and counter to your educational needs.

Gaining Experience Through Internships and Entry-Level Positions

Any recent graduate who’s seen a job listing that asks for a degree and several years of experience can tell you how much employers value hands-on experience. That’s as true in data science as it is in any other field, which is where internships come in. An internship is an unpaid position (often with a prestigious company) that’s ideal for learning the workplace ropes and forming connections with people who can help you advance your career.

If an internship sounds right for you, consider these tips that may make them easier to find:

  • Check the job posting platforms – The likes of Indeed and LinkedIn are great places to find companies (and the people within them) who may offer internships. There are also intern-dedicated websites, such as internships.com, which focus specifically on this type of employment.
  • Meet the basic requirements – Most internships don’t require you to have formal qualifications, such as a Master’s degree, to apply. But by the same token, companies won’t accept you for a data science internship if you have no experience with computers. A solid understanding of major programming and scripting languages, such as Java, SQL, and C++, gives you a major head start. You’ve also got a better chance of landing a role if you enrolled in an undergraduate program (or have completed one) in computer science, math, or a similar field.
  • Check individual business websites – Not all companies run to LinkedIn or job posting sites when they advertise vacant positions. Some put those roles on their own websites, meaning a little more in-depth searching can pay off. Create a list of companies that you believe you’d enjoy working for and check their business websites to see if they’re offering internships via their sites.

Factors to Consider When Deciding if a Masters Is Necessary

You know that the answer to “Do you need a Master’s for data science?” is “no,” but there are downsides to the alternatives. Being able to prove your skills on a resume is a must, which the self-learning route doesn’t always provide, and some alternatives may be too fast-paced for those who want to take their time getting to grips with the subject. When making your choice, the following four factors should play into your decision-making

Personal Goals and Career Aspirations

The opportunity cost factor often comes into play here, as you may find that some entry-level roles for computer science graduates can “teach you as you go” when it comes to data science. Still, you may not want to feel like you’re stuck in a lower role for several years when you could advance faster with a Master’s under your belt. So, consider charting your ideal career course, with the positions that best align with your goals, to figure out if you’ll need a Master’s to get you to where you want to go.

Current Level of Education and Experience

Some of the options for getting into data science aren’t available to those with limited experience. For example, anybody can make their start with books and articles, which have no barrier to entry. But many internships require demonstrable proof that you understand various programming and scripting languages, with some also asking to see evidence of formal education. As for a Master’s degree, you’ll need a BSc in computer science (or an equivalent degree) to walk down that path.

Financial Considerations

Money makes the educational wheel turn, at least when it comes to formal education. As mentioned, a Master’s in data science can set you back up to $50,000, which may sting (and even be unfeasible) if you already have student loans to pay off for an undergraduate degree. Online courses are more cost-effective (and offer certification), while bootcamps and competitions can either pay you for learning or set you up in a career if you succeed.

Time Commitment and Flexibility

The simple question here is how long do you want to wait to start your career in data science? The patient person can afford to spend a couple of years earning their Master’s degree, and will benefit from having formal and respectable proof of their skills when they’re done. But if you want to get started right now, internships combined with more flexible online courses may provide a faster route to your goal.

A Master’s Degree – Do You Need It to Master Data Science?

Everybody’s answer is different when they ask themselves “do I need a Master’s in data science?” Some prefer the formalized approach that a Master’s offers, along with the exposure to industry professionals that may set them up for strong careers in the future. Others are less patient, preferring to quickly develop skills in a bootcamp, while yet others want a more free-form educational experience that is malleable to their needs and time constraints.

In the end, your circumstances, career goals, and educational preferences are the main factors when deciding which route to take. A Master’s degree is never a bad thing to have on your resume, but it’s not essential for a career in data science. Explore your options and choose whatever works best for you.

Related posts

Agenda Digitale: The Five Pillars of the Cloud According to NIST – A Compass for Businesses and Public Administrations
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 26, 2025 7 min read

Source:


By Lokesh Vij, Professor of Cloud Computing Infrastructure, Cloud Development, Cloud Computing Automation and Ops and Cloud Data Stacks at OPIT – Open Institute of Technology

NIST identifies five key characteristics of cloud computing: on-demand self-service, network access, resource pooling, elasticity, and metered service. These pillars explain the success of the global cloud market of 912 billion in 2025

In less than twenty years, the cloud has gone from a curiosity to an indispensable infrastructure. According to Precedence Research, the global market will reach 912 billion dollars in 2025 and will exceed 5.1 trillion in 2034. In Europe, the expected spending for 2025 will be almost 202 billion dollars. At the base of this success are five characteristics, identified by the NIST (National Institute of Standards and Technology): on-demand self-service, network access, shared resource pool, elasticity and measured service.

Understanding them means understanding why the cloud is the engine of digital transformation.

On-demand self-service: instant provisioning

The journey through the five pillars starts with the ability to put IT in the hands of users.

Without instant provisioning, the other benefits of the cloud remain potential. Users can turn resources on and off with a click or via API, without tickets or waiting. Provisioning a VM, database, or Kubernetes cluster takes seconds, not weeks, reducing time to market and encouraging continuous experimentation. A DevOps team that releases microservices multiple times a day or a fintech that tests dozens of credit-scoring models in parallel benefit from this immediacy. In OPIT labs, students create complete Kubernetes environments in two minutes, run load tests, and tear them down as soon as they’re done, paying only for the actual minutes.

Similarly, a biomedical research group can temporarily allocate hundreds of GPUs to train a deep-learning model and release them immediately afterwards, without tying up capital in hardware that will age rapidly. This flexibility allows the user to adapt resources to their needs in real time. There are no hard and fast constraints: you can activate a single machine and deactivate it when it is no longer needed, or start dozens of extra instances for a limited time and then release them. You only pay for what you actually use, without waste.

Wide network access: applications that follow the user everywhere

Once access to resources is made instantaneous, it is necessary to ensure that these resources are accessible from any location and device, maintaining a uniform user experience. The cloud lives on the network and guarantees ubiquity and independence from the device.

A web app based on HTTP/S can be used from a laptop, tablet or smartphone, without the user knowing where the containers are running. Geographic transparency allows for multi-channel strategies: you start a purchase on your phone and complete it on your desktop without interruptions. For the PA, this means providing digital identities everywhere, for the private sector, offering 24/7 customer service.

Broad access moves security from the physical perimeter to the digital identity and introduces zero-trust architecture, where every request is authenticated and authorized regardless of the user’s location.

All you need is a network connection to use the resources: from the office, from home or on the move, from computers and mobile devices. Access is independent of the platform used and occurs via standard web protocols and interfaces, ensuring interoperability.

Shared Resource Pools: The Economy of Scale of Multi-Tenancy

Ubiquitous access would be prohibitive without a sustainable economic model. This is where infrastructure sharing comes in.

The cloud provider’s infrastructure aggregates and shares computational resources among multiple users according to a multi-tenant model. The economies of scale of hyperscale data centers reduce costs and emissions, putting cutting-edge technologies within the reach of startups and SMBs.

Pooling centralizes patching, security, and capacity planning, freeing IT teams from repetitive tasks and reducing the company’s carbon footprint. Providers reinvest energy savings in next-generation hardware and immersion cooling research programs, amplifying the collective benefit.

Rapid Elasticity: Scaling at the Speed ​​of Business

Sharing resources is only effective if their allocation follows business demand in real time. With elasticity, the infrastructure expands or reduces resources in minutes following the load. The system behaves like a rubber band: if more power or more instances are needed to deal with a traffic spike, it automatically scales in real time; when demand drops, the additional resources are deactivated just as quickly.

This flexibility seems to offer unlimited resources. In practice, a company no longer has to buy excess servers to cover peaks in demand (which would remain unused during periods of low activity), but can obtain additional capacity from the cloud only when needed. The economic advantage is considerable: large initial investments are avoided and only the capacity actually used during peak periods is paid for.

In the OPIT cloud automation lab, students simulate a streaming platform that creates new Kubernetes pods as viewers increase and deletes them when the audience drops: a concrete example of balancing user experience and cost control. The effect is twofold: the user does not suffer slowdowns and the company avoids tying up capital in underutilized servers.

Metered Service: Transparency and Cost Governance

The dynamic scale generated by elasticity requires precise visibility into consumption and expenses : without measurement there is no governance. Metering makes every second of CPU, every gigabyte and every API call visible. Every consumption parameter is tracked and made available in transparent reports.

This data enables pay-per-use pricing , i.e. charges proportional to actual usage. For the customer, this translates into variable costs: you only pay for the resources actually consumed. Transparency helps you plan your budget: thanks to real-time data, it is easier to optimize expenses, for example by turning off unused resources. This eliminates unnecessary fixed costs, encouraging efficient use of resources.

The systemic value of the five pillars

When the five pillars work together, the effect is multiplier . Self-service and elasticity enable rapid response to workload changes, increasing or decreasing resources in real time, and fuel continuous experimentation; ubiquitous access and pooling provide global scalability; measurement ensures economic and environmental sustainability.

It is no surprise that the Italian market will grow from $12.4 billion in 2025 to $31.7 billion in 2030 with a CAGR of 20.6%. Manufacturers and retailers are migrating mission-critical loads to cloud-native platforms , gaining real-time data insights and reducing time to value .

From the laboratory to the business strategy

From theory to practice: the NIST pillars become a compass for the digital transformation of companies and Public Administration. In the classroom, we start with concrete exercises – such as the stress test of a video platform – to demonstrate the real impact of the five pillars on performance, costs and environmental KPIs.

The same approach can guide CIOs and innovators: if processes, governance and culture embody self-service, ubiquity, pooling, elasticity and measurement, the organization is ready to capture the full value of the cloud. Otherwise, it is necessary to recalibrate the strategy by investing in training, pilot projects and partnerships with providers. The NIST pillars thus confirm themselves not only as a classification model, but as the toolbox with which to build data-driven and sustainable enterprises.

Read the full article below (in Italian):

Read the article
ChatGPT Action Figures & Responsible Artificial Intelligence
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 23, 2025 6 min read

You’ve probably seen two of the most recent popular social media trends. The first is creating and posting your personalized action figure version of yourself, complete with personalized accessories, from a yoga mat to your favorite musical instrument. There is also the Studio Ghibli trend, which creates an image of you in the style of a character from one of the animation studio’s popular films.

Both of these are possible thanks to OpenAI’s GPT-4o-powered image generator. But what are you risking when you upload a picture to generate this kind of content? More than you might imagine, according to Tom Vazdar, chair of cybersecurity at the Open Institute of Technology (OPIT), in a recent interview with Wired. Let’s take a closer look at the risks and how this issue ties into the issue of responsible artificial intelligence.

Uploading Your Image

To get a personalized image of yourself back from ChatGPT, you need to upload an actual photo, or potentially multiple images, and tell ChatGPT what you want. But in addition to using your image to generate content for you, OpenAI could also be using your willingly submitted image to help train its AI model. Vazdar, who is also CEO and AI & Cybersecurity Strategist at Riskoria and a board member for the Croatian AI Association, says that this kind of content is “a gold mine for training generative models,” but you have limited power over how that image is integrated into their training strategy.

Plus, you are uploading much more than just an image of yourself. Vazdar reminds us that we are handing over “an entire bundle of metadata.” This includes the EXIF data attached to the image, such as exactly when and where the photo was taken. And your photo may have more content in it than you imagine, with the background – including people, landmarks, and objects – also able to be tied to that time and place.

In addition to this, OpenAI also collects data about the device that you are using to engage with the platform, and, according to Vazdar, “There’s also behavioral data, such as what you typed, what kind of image you asked for, how you interacted with the interface and the frequency of those actions.”

After all that, OpenAI knows a lot about you, and soon, so could their AI model, because it is studying you.

How OpenAI Uses Your Data

OpenAI claims that they did not orchestrate these social media trends simply to get training data for their AI, and that’s almost certainly true. But they also aren’t denying that access to that freely uploaded data is a bonus. As Vazdar points out, “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

OpenAI isn’t the only company using your data to train its AI. Meta recently updated its privacy policy to allow the company to use your personal information on Meta-related services, such as Facebook, Instagram, and WhatsApp, to train its AI. While it is possible to opt-out, Meta isn’t advertising that fact or making it easy, which means that most users are sharing their data by default.

You can also control what happens with your data when using ChatGPT. Again, while not well publicized, you can use ChatGPT’s self-service tools to access, export, and delete your personal information, and opt out of having your content used to improve OpenAI’s model. Nevertheless, even if you choose these options, it is still worth it to strip data like location and time from images before uploading them and to consider the privacy of any images, including people and objects in the background, before sharing.

Are Data Protection Laws Keeping Up?

OpenAI and Meta need to provide these kinds of opt-outs due to data protection laws, such as GDPR in the EU and the UK. GDPR gives you the right to access or delete your data, and the use of biometric data requires your explicit consent. However, your photo only becomes biometric data when it is processed using a specific technical measure that allows for the unique identification of an individual.

But just because ChatGPT is not using this technology, doesn’t mean that ChatGPT can’t learn a lot about you from your images.

AI and Ethics Concerns

But you might wonder, “Isn’t it a good thing that AI is being trained using a diverse range of photos?” After all, there have been widespread reports in the past of AI struggling to recognize black faces because they have been trained mostly on white faces. Similarly, there have been reports of bias within AI due to the information it receives. Doesn’t sharing from a wide range of users help combat that? Yes, but there is so much more that could be done with that data without your knowledge or consent.

One of the biggest risks is that the data can be manipulated for marketing purposes, not just to get you to buy products, but also potentially to manipulate behavior. Take, for instance, the Cambridge Analytica scandal, which saw AI used to manipulate voters and the proliferation of deepfakes sharing false news.

Vazdar believes that AI should be used to promote human freedom and autonomy, not threaten it. It should be something that benefits humanity in the broadest possible sense, and not just those with the power to develop and profit from AI.

Responsible Artificial Intelligence

OPIT’s Master’s in Responsible AI combines technical expertise with a focus on the ethical implications of AI, diving into questions such as this one. Focusing on real-world applications, the course considers sustainable AI, environmental impact, ethical considerations, and social responsibility.

Completed over three or four 13-week terms, it starts with a foundation in technical artificial intelligence and then moves on to advanced AI applications. Students finish with a Capstone project, which sees them apply what they have learned to real-world problems.

Read the article