

More and more companies are employing data scientists. In fact, the number has nearly doubled in recent years, indicating the importance of this profession for the modern workplace.
Additionally, data science has become a highly lucrative career. Professionals easily make over $120,000 annually, which is why it’s one of the most popular occupations.
This article will cover all you need to know about data science. We’ll define the term, its main applications, and essential elements.
What Is Data Science?
Data science analyzes raw information to provide actionable insights. Data scientists who retrieve this data utilize cutting-edge equipment and algorithms. After the collection, they analyze and break down the findings to make them readable and understandable. This way, managers, owners, and stakeholders can make informed strategic decisions.
Data Science Meaning
Although most data science definitions are relatively straightforward, there’s a lot of confusion surrounding this topic. Some people believe the field is about developing and maintaining data storage structures, but that’s not the case. It’s about analyzing data storage solutions to solve business problems and anticipate trends.
Hence, it’s important to distinguish between data science projects and those related to other fields. You can do so by testing your projects for certain aspects.
For instance, one of the most significant differences between data engineering and data science is that data science requires programming. Data scientists typically rely on code. As such, they clean and reformat information to increase its visibility across all systems.
Furthermore, data science generally requires the use of math. Complex math operations enable professionals to process raw data and turn it into usable insights. For this reason, companies require their data scientists to have high mathematical expertise.
Finally, data science projects require interpretation. The most significant difference between data scientists and some other professionals is that they use their knowledge to visualize and interpret their findings. The most common interpretation techniques include charts and graphs.
Data Science Applications
Many questions arise when researching data science. In particular, what are the applications of data science? It can be implemented for a variety of purposes:
- Enhancing the relevance of search results – Search engines used to take forever to provide results. The wait time is minimal nowadays. One of the biggest factors responsible for this improvement is data science.
- Adding unique flair to your video games – All gaming areas can gain a lot from data science. High-end games based on data science can analyze your movements to anticipate and react to your decisions, making the experience more interactive.
- Risk reduction – Several financial giants, such as Deloitte, hire data scientists to extract key information that lets them reduce business risks.
- Driverless vehicles – Technology that powers self-driving vehicles identifies traffic jams, speed limits, and other information to make driving safer for all participants. Data science-based cars can also help you reach your destination sooner.
- Ad targeting – Billboards and other forms of traditional marketing can be effective. But considering the number of online consumers is over 2.6 billion, organizations need to shift their promotion activities online. Data science is the answer. It lets organizations improve ad targeting by offering insights into consumer behaviors.
- AR optimization – AR brands can take a number of approaches to refining their headsets. Data science is one of them. The algorithms involved in data science can improve AR machines, translating to a better user experience.
- Premium recognition features – Siri might be the most famous tool developed through data science methods.
Learn Data Science
If you want to learn data science, understanding each stage of the process is an excellent starting point.
Data Collection
Data scientists typically start their day with data collection – gathering relevant information that helps them anticipate trends and solve problems. There are several methods associated with collecting data.
Data Mining
Data mining is great for anticipating outcomes. The procedure correlates different bits of information and enables you to detect discrepancies.
Web Scraping
Web scraping is the process of collecting data from web pages. There are different web scraping techniques, but most professionals utilize computer bots. This technique is faster and less prone to error than manual data discovery.
Remember that while screen scraping and web scraping are often used interchangeably, they’re not the same. The former merely copies screen pixels after recognizing them from various user interface components. The latter is a more extensive procedure that recovers the HTML code and any information stored within it.
Data Acquisition
Data acquisition is a form of data collection that garners information before storing it on your cloud-based servers or other solutions. Companies can collect information with specialized sensors and other devices. This equipment makes up their data acquisition systems.
Data Cleaning
You only need usable and original information in your system. Duplicate and redundant data can be a major obstacle, which is why you should use data cleaning. It removes contradictory information and helps you separate the wheat from the chaff.
Data Preprocessing
Data preprocessing prepares your data sets for other processes. Once it’s done, you can move on to information transformation, normalization, and analysis.
Data Transformation
Data transformation turns one version of information into another. It transforms raw data into usable information.
Data Normalization
You can’t start your data analysis without normalizing the information. Data normalization helps ensure that your information has uniform organization and appearance. It makes data sets more cohesive by removing illogical or unnecessary details.
Data Analysis
The next step in the data science lifecycle is data analysis. Effective data analysis provides more accurate data, improves customer insights and targeting, reduces operational costs, and more. Following are the main types of data analysis:
Exploratory Data Analysis
Exploratory data analysis is typically the first analysis performed in the data science lifecycle. The aim is to discover and summarize key features of the information you want to discuss.
Predictive Analysis
Predictive analysis comes in handy when you wish to forecast a trend. Your system uses historical information as a basis.
Statistical Analysis
Statistical analysis evaluates information to discover useful trends. It uses numbers to plan studies, create models, and interpret research.
Machine Learning
Machine learning plays a pivotal role in data analysis. It processes enormous chunks of data quickly with minimal human involvement. The technology can even mimic a human brain, making it incredibly accurate.
Data Visualization
Preparing and analyzing information is important, but a lot more goes into data science. More specifically, you need to visualize information using different methods. Data visualization is essential when presenting your findings to a general audience because it makes the information easily digestible.
Data Visualization Tools
Many tools can help you expedite your data visualization and create insightful dashboards.
Here are some of the best data visualization tools:
- Zoho Analytics
- Datawrapper
- Tableau
- Google Charts
- Microsoft Excel
Data Visualization Techniques
The above tools contain a plethora of data visualization techniques:
- Line chart
- Histogram
- Pie chart
- Area plot
- Scatter plot
- Hexbin plots
- Word clouds
- Network diagrams
- Highlight tables
- Bullet graphs
Data Storytelling
You can’t have effective data presentation without next-level storytelling. It contextualizes your narrative and gives your audience a better understanding of the process. Data dashboards and other tools can be an excellent way to enhance your storytelling.
Data Interpretation
The success of your data science work depends on your ability to derive conclusions. That’s where data interpretation comes in. It features a variety of methods that let you review and categorize your information to solve critical problems.
Data Interpretation Tools
Rather than interpret data on your own, you can incorporate a host of data interpretation tools into your toolbox:
- Layer – You can easily step up your data interpretation game with Layer. You can send well-designed spreadsheets to all stakeholders for improved visibility. Plus, you can integrate the app with other platforms you use to elevate productivity.
- Power Bi – A vast majority of data scientists utilize Power BI. Its intuitive interface enables you to develop and set up customized interpretation tools, offering a tailored approach to data science.
- Tableau – If you’re looking for another straightforward yet powerful platform, Tableau is a fantastic choice. It features robust dashboards with useful insights and synchronizes well with other applications.
- R – Advanced users can develop exceptional data interpretation graphs with R. This programming language offers state-of-the-art interpretation tools to accelerate your projects and optimize your data architecture.
Data Interpretation Techniques
The two main data interpretation techniques are the qualitative method and the quantitative method.
The qualitative method helps you interpret qualitative information. You present your findings using text instead of figures.
By contrast, the quantitative method is a numerical data interpretation technique. It requires you to elaborate on your data with numbers.
Data Insights
The final phase of the data science process involves data insights. These give your organization a complete picture of the information you obtained and interpreted, allowing stakeholders to take action on company problems. That’s especially true with actionable insights, as they recommend solutions for increasing productivity and profits.
Climb the Data Science Career Ladder, Starting From the Basics
The first step to becoming a data scientist is understanding the essence of data science and its applications. We’ve given you the basics involved in this field – the rest is up to you. Master every stage of the data science lifecycle, and you’ll be ready for a rewarding career path.
Related posts

The Open Institute of Technology (OPIT) is turning two! It has been both a long journey and a whirlwind trip to reach this milestone. But it is also the perfect time to stop and reflect on what we have achieved over the last two years, as well as assess our hopes for the future. Join us as we map our journey over the last two years and look forward to future plans.
July 2023: Launching OPIT
OPIT officially launched as an EU-accredited online higher education institution in July 2023, and offered two core programs: a BSc in Modern Computer Science and an MSc in Applied Data Science and AI. Its first class matriculated in September of that year.
The launch of OPIT was several years in the making. Founder Riccardo Ocleppo was planning OPIT ever since he launched his first company, Docsity, in 2010, an online platform for students to share access to educational resources. As part of working on that project, Ocleppo had the chance to talk to thousands of students and professors and discovered just how big a gap there is between what is taught in universities today and job market demands. Ocleppo felt that this gap was especially wide in the field of computer science, and OPIT was his concept to fill that gap.
The vision was to provide university-level teaching that was accessible around the world through digital learning technologies and that was also affordable. Ocleppo’s vision also involved international professors and building strong relationships with global companies to ensure a truly international and fit-for-purpose learning experience.
One of the most important parts of launching OPIT was the recruitment of the faculty of professors, which Ocleppo was personally involved in. The idea was to build a roster of expert teachers and professionals who were leaders in the field and urge them to unite the teaching fundamentals with real-world applications and experience. The process involved screening more than 5,000 CVs, interviewing over 200 candidates, and recruiting 25 professors to form the core of OPIT’s faculty.
September 2023: The Inaugural Cohort
When OPIT officially launched, its first cohort included 100 students from 38 different countries. Divided between the BSc and MSc courses, students were also allowed to participate in one of two different tracks. Some chose the standard track to accommodate their existing work commitments, while others chose to fast-track to complete their studies sooner.
OPIT was pleased with its success in making the courses international and accessible, with notable representation from Africa. In the first cohort, 40% of MSc students were also from non-STEM fields, showing OPIT’s success at engaging professionals looking to develop skills for the modern workplace.
July 2024: A Growing Curriculum
Building on this initial success, in 2024, OPIT expanded its academic offering to include a second BSc program in Digital Business, and three new MSc programs in Digital Business & Innovation, Responsible Artificial Intelligence, and Enterprise Cybersecurity. These were all offered in addition to the original two programs.
The new course offerings led to total student numbers growing to over 300, hailing from 78 different countries. This also led to an expansion of the faculty, with professionals recruited from major business leaders such as Symantec, Microsoft, PayPal, McKinsey, MIT, Morgan Stanley, Amazon, and U.S. Naval Research. This focus on professional experience and real-world applications is ideal for OPIT as 80% of the student body are active working professionals.
January 2025: First Graduating Class
OPIT held its first-ever graduation ceremony in Valletta, Malta, on March 8, 2025. The ceremony was a hybrid event, with students attending both in person and virtually. The first graduating class consisted of 40 students who received an MSc in Applied Data Science and AI.
OPIT’s MSc programs include a capstone project that sees students apply their learning to real-world challenges. Projects included the use of large language models for the creation of chatbots in the ed-tech field, the digitalization of customer support processes in the paper and non-woven industry, personal data protection systems, AI applications for environmental sustainability, and predictive models for disaster prevention linked to climate change. Since many OPIT students realized their capstone projects within their organizations, OPIT also saw itself successfully facilitating digital innovation in the field.
July 2025: New Learning Environments
The next step for OPIT is not just to teach others how to leverage AI to work smarter, but to start applying AI solutions in our own business environment. To this end, OPIT unveiled its OPIT AI Copilot at the Microsoft AI Agents and the Future of Higher Education event in Milan in June 2025.
The OPIT AI Copilot is a specialist AI Agent designed to enhance learning in OPIT’s fully digital environment. OPIT AI Copilot acts as a personal tutor and study companion, and but rather than being trained on the World Wide Web, it is specifically trained on OPIT’s educational archive of around 3,500 hours of lectures and 3,000 proprietary documents.
The OPIT AI Copilot then provides real-time, personalized guidance that adapts to where the student is in the course and the progress they have shown in grasping the material. As well as pulling from existing materials, the OPIT AI Copilot can generate content to deepen learning, such as code samples and practical exams. It can also answer questions posed by the students with answers grounded in the official course material. The tool is available 24/7, and also has an intelligent examination mode, which prevents cheating.
In this way, OPIT AI Copilot enriches the OPIT learning environment by providing students with 24/7 personalized support for their learning journey, ideal for busy professionals balancing work and study. It is a step towards facing the challenge of “one-size-fits-all” education approaches that have plagued learning institutions for millennia.
September 2025: A New Cohort
On the heels of the OPIT AI Copilot launch, OPIT is excited about recruiting its next round of students, with applications open until September 2025. If you are interested in joining OPIT, you can learn more about its courses here.

Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: