More and more companies are employing data scientists. In fact, the number has nearly doubled in recent years, indicating the importance of this profession for the modern workplace.

Additionally, data science has become a highly lucrative career. Professionals easily make over $120,000 annually, which is why it’s one of the most popular occupations.

This article will cover all you need to know about data science. We’ll define the term, its main applications, and essential elements.

What Is Data Science?

Data science analyzes raw information to provide actionable insights. Data scientists who retrieve this data utilize cutting-edge equipment and algorithms. After the collection, they analyze and break down the findings to make them readable and understandable. This way, managers, owners, and stakeholders can make informed strategic decisions.

Data Science Meaning

Although most data science definitions are relatively straightforward, there’s a lot of confusion surrounding this topic. Some people believe the field is about developing and maintaining data storage structures, but that’s not the case. It’s about analyzing data storage solutions to solve business problems and anticipate trends.

Hence, it’s important to distinguish between data science projects and those related to other fields. You can do so by testing your projects for certain aspects.

For instance, one of the most significant differences between data engineering and data science is that data science requires programming. Data scientists typically rely on code. As such, they clean and reformat information to increase its visibility across all systems.

Furthermore, data science generally requires the use of math. Complex math operations enable professionals to process raw data and turn it into usable insights. For this reason, companies require their data scientists to have high mathematical expertise.

Finally, data science projects require interpretation. The most significant difference between data scientists and some other professionals is that they use their knowledge to visualize and interpret their findings. The most common interpretation techniques include charts and graphs.

Data Science Applications

Many questions arise when researching data science. In particular, what are the applications of data science? It can be implemented for a variety of purposes:

  • Enhancing the relevance of search results – Search engines used to take forever to provide results. The wait time is minimal nowadays. One of the biggest factors responsible for this improvement is data science.
  • Adding unique flair to your video games – All gaming areas can gain a lot from data science. High-end games based on data science can analyze your movements to anticipate and react to your decisions, making the experience more interactive.
  • Risk reduction – Several financial giants, such as Deloitte, hire data scientists to extract key information that lets them reduce business risks.
  • Driverless vehicles – Technology that powers self-driving vehicles identifies traffic jams, speed limits, and other information to make driving safer for all participants. Data science-based cars can also help you reach your destination sooner.
  • Ad targeting – Billboards and other forms of traditional marketing can be effective. But considering the number of online consumers is over 2.6 billion, organizations need to shift their promotion activities online. Data science is the answer. It lets organizations improve ad targeting by offering insights into consumer behaviors.
  • AR optimization – AR brands can take a number of approaches to refining their headsets. Data science is one of them. The algorithms involved in data science can improve AR machines, translating to a better user experience.
  • Premium recognition features – Siri might be the most famous tool developed through data science methods.

Learn Data Science

If you want to learn data science, understanding each stage of the process is an excellent starting point.

Data Collection

Data scientists typically start their day with data collection – gathering relevant information that helps them anticipate trends and solve problems. There are several methods associated with collecting data.

Data Mining

Data mining is great for anticipating outcomes. The procedure correlates different bits of information and enables you to detect discrepancies.

Web Scraping

Web scraping is the process of collecting data from web pages. There are different web scraping techniques, but most professionals utilize computer bots. This technique is faster and less prone to error than manual data discovery.

Remember that while screen scraping and web scraping are often used interchangeably, they’re not the same. The former merely copies screen pixels after recognizing them from various user interface components. The latter is a more extensive procedure that recovers the HTML code and any information stored within it.

Data Acquisition

Data acquisition is a form of data collection that garners information before storing it on your cloud-based servers or other solutions. Companies can collect information with specialized sensors and other devices. This equipment makes up their data acquisition systems.

Data Cleaning

You only need usable and original information in your system. Duplicate and redundant data can be a major obstacle, which is why you should use data cleaning. It removes contradictory information and helps you separate the wheat from the chaff.

Data Preprocessing

Data preprocessing prepares your data sets for other processes. Once it’s done, you can move on to information transformation, normalization, and analysis.

Data Transformation

Data transformation turns one version of information into another. It transforms raw data into usable information.

Data Normalization

You can’t start your data analysis without normalizing the information. Data normalization helps ensure that your information has uniform organization and appearance. It makes data sets more cohesive by removing illogical or unnecessary details.

Data Analysis

The next step in the data science lifecycle is data analysis. Effective data analysis provides more accurate data, improves customer insights and targeting, reduces operational costs, and more. Following are the main types of data analysis:

Exploratory Data Analysis

Exploratory data analysis is typically the first analysis performed in the data science lifecycle. The aim is to discover and summarize key features of the information you want to discuss.

Predictive Analysis

Predictive analysis comes in handy when you wish to forecast a trend. Your system uses historical information as a basis.

Statistical Analysis

Statistical analysis evaluates information to discover useful trends. It uses numbers to plan studies, create models, and interpret research.

Machine Learning

Machine learning plays a pivotal role in data analysis. It processes enormous chunks of data quickly with minimal human involvement. The technology can even mimic a human brain, making it incredibly accurate.

Data Visualization

Preparing and analyzing information is important, but a lot more goes into data science. More specifically, you need to visualize information using different methods. Data visualization is essential when presenting your findings to a general audience because it makes the information easily digestible.

Data Visualization Tools

Many tools can help you expedite your data visualization and create insightful dashboards.

Here are some of the best data visualization tools:

  • Zoho Analytics
  • Datawrapper
  • Tableau
  • Google Charts
  • Microsoft Excel

Data Visualization Techniques

The above tools contain a plethora of data visualization techniques:

  • Line chart
  • Histogram
  • Pie chart
  • Area plot
  • Scatter plot
  • Hexbin plots
  • Word clouds
  • Network diagrams
  • Highlight tables
  • Bullet graphs

Data Storytelling

You can’t have effective data presentation without next-level storytelling. It contextualizes your narrative and gives your audience a better understanding of the process. Data dashboards and other tools can be an excellent way to enhance your storytelling.

Data Interpretation

The success of your data science work depends on your ability to derive conclusions. That’s where data interpretation comes in. It features a variety of methods that let you review and categorize your information to solve critical problems.

Data Interpretation Tools

Rather than interpret data on your own, you can incorporate a host of data interpretation tools into your toolbox:

  • Layer – You can easily step up your data interpretation game with Layer. You can send well-designed spreadsheets to all stakeholders for improved visibility. Plus, you can integrate the app with other platforms you use to elevate productivity.
  • Power Bi – A vast majority of data scientists utilize Power BI. Its intuitive interface enables you to develop and set up customized interpretation tools, offering a tailored approach to data science.
  • Tableau – If you’re looking for another straightforward yet powerful platform, Tableau is a fantastic choice. It features robust dashboards with useful insights and synchronizes well with other applications.
  • R – Advanced users can develop exceptional data interpretation graphs with R. This programming language offers state-of-the-art interpretation tools to accelerate your projects and optimize your data architecture.

Data Interpretation Techniques

The two main data interpretation techniques are the qualitative method and the quantitative method.

The qualitative method helps you interpret qualitative information. You present your findings using text instead of figures.

By contrast, the quantitative method is a numerical data interpretation technique. It requires you to elaborate on your data with numbers.

Data Insights

The final phase of the data science process involves data insights. These give your organization a complete picture of the information you obtained and interpreted, allowing stakeholders to take action on company problems. That’s especially true with actionable insights, as they recommend solutions for increasing productivity and profits.

Climb the Data Science Career Ladder, Starting From the Basics

The first step to becoming a data scientist is understanding the essence of data science and its applications. We’ve given you the basics involved in this field – the rest is up to you. Master every stage of the data science lifecycle, and you’ll be ready for a rewarding career path.

Related posts

Juggling Work and Study: Interview With OPIT Student Karina
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 5, 2025 6 min read

During the Open Institute of Technology’s (OPIT’s) 2025 Graduation Day, we conducted interviews with many recent graduates to understand why they chose OPIT, how they felt about the course, and what advice they might give to others considering studying at OPIT.

Karina is an experienced FinTech professional who is an experienced integration manager, ERP specialist, and business analyst. She was interested in learning AI applications to expand her career possibilities, and she chose OPIT’s MSc in Applied Data Science & AI.

In the interview, Karina discussed why she chose OPIT over other courses of study, the main challenges she faced when completing the course while working full-time, and the kind of support she received from OPIT and other students.

Why Study at OPIT?

Karina explained that she was interested in enhancing her AI skills to take advantage of a major emerging technology in the FinTech field. She said that she was looking for a course that was affordable and that she could manage alongside her current demanding job. Karina noted that she did not have the luxury to take time off to become a full-time student.

She was principally looking at courses in the United States and the United Kingdom. She found that comprehensive courses were expensive, costing upwards of $50,000, and did not always offer flexible study options. Meanwhile, flexible courses that she could complete while working offered excellent individual modules, but didn’t always add up to a coherent whole. This was something that set OPIT apart.

Karina admits that she was initially skeptical when she encountered OPIT because, at the time, it was still very new. OPIT only started offering courses in September 2023, so 2025 was the first cohort of graduates.

Nevertheless, Karina was interested in OPIT’s affordable study options and the flexibility of fully remote learning and part-time options. She said that when she looked into the course, she realized that it aligned very closely with what she was looking for.

In particular, Karina noted that she was always wary of further study because of the level of mathematics required in most computer science courses. She appreciated that OPIT’s course focused on understanding the underlying core principles and the potential applications, rather than the fine programming and mathematical details. This made the course more applicable to her professional life.

OPIT’s MSc in Applied Data Science & AI

The course Karina took was OPIT’s MSc in Applied Data Science & AI. It is a three- to four-term course (13 weeks), which can take between one and two years to complete, depending on the pace you choose and whether you choose the 90 or 120 ECTS option. As well as part-time, there are also regular and fast-track options.

The course is fully online and completed in English, with an accessible tuition fee of €2,250 per term, which is €6,750 for the 90 ECTS course and €9,000 for the 120 ECTS course. Payment plans are available as are scholarships, and discounts are available if you pay the full amount upfront.

It matches foundational tech modules with business application modules to build a strong foundation. It then ends with a term-long research project culminating in a thesis. Internships with industry partners are encouraged and facilitated by OPIT, or professionals can work on projects within their own companies.

Entry requirements include a bachelor’s degree or equivalency in any field, including non-tech fields, and English proficiency to a B2 level.

Faculty members include Pierluigi Casale, a former Data Science and AI Innovation Officer for the European Parliament and Principal Data Scientist at TomTom; Paco Awissi, former VP at PSL Group and an instructor at McGill University; and Marzi Bakhshandeh, a Senior Product Manager at ING.

Challenges and Support

Karina shared that her biggest challenge while studying at OPIT was time management and juggling the heavy learning schedule with her hectic job. She admitted that when balancing the two, there were times when her social life suffered, but it was doable. The key to her success was organization, time management, and the support of the rest of the cohort.

According to Karina, the cohort WhatsApp group was often a lifeline that helped keep her focused and optimistic during challenging times. Sharing challenges with others in the same boat and seeing the example of her peers often helped.

The OPIT Cohort

OPIT has a wide and varied cohort with over 300 students studying remotely from 78 countries around the world. Around 80% of OPIT’s students are already working professionals who are currently employed at top companies in a variety of industries. This includes global tech firms such as Accenture, Cisco, and Broadcom, FinTech companies like UBS, PwC, Deloitte, and the First Bank of Nigeria, and innovative startups and enterprises like Dynatrace, Leonardo, and the Pharo Foundation.

Study Methods

This cohort meets in OPIT’s online classrooms, powered by the Canvas Learning Management System (LMS). One of the world’s leading teaching and learning software, it acts as a virtual hub for all of OPIT’s academic activities, including live lectures and discussion boards. OPIT also uses the same portal to conduct continuous assessments and prepare students before final exams.

If you want to collaborate with other students, there is a collaboration tab where you can set up workrooms, and also an official Slack platform. Students tend to use WhatsApp for other informal communications.

If students need additional support, they can book an appointment with the course coordinator through Canvas to get advice on managing their workload and balancing their commitments. Students also get access to experienced career advisor Mike McCulloch, who can provide expert guidance.

A Supportive Environment

These services and resources create a supportive environment for OPIT students, which Karina says helped her throughout her course of study. Karina suggests organization and leaning into help from the community are the best ways to succeed when studying with OPIT.

Read the article
Leading in the Digital Age: Navigating Strategy in the Metaverse
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 5, 2025 5 min read

In April 2025, Professor Francesco Derchi from the Open Institute of Technology (OPIT) and Chair of OPIT’s Digital Business programs entered the online classroom to talk about the current state of the Metaverse and what companies can do to engage with this technological shift. As an expert in digital marketing, he is well-placed to talk about how brands can leverage the Metaverse to further company goals.

Current State of the Metaverse

Francesco started by exploring what the Metaverse is and the rocky history of its development. Although many associate the term Metaverse with Mark Zuckerberg’s 2021 announcement of Meta’s pivot toward a virtual immersive experience co-created by users, the concept actually existed long before. In his 1992 novel Snow Crash, author Neal Stephenson described a very similar concept, with people using avatars to seamlessly step out of the real world and into a highly connected virtual world.

Zuckerberg’s announcement was not even the start of real Metaverse-like experiences. Released in 2003, Second Life is a virtual world in which multiple users come together and engage through avatars. Participation in Second Life peaked at about one million active users in 2007. Similarly, Minecraft, released in 2011, is a virtual world where users can explore and build, and it offers multiplayer options.

What set Zuckerberg’s vision apart from these earlier iterations is that he imagined a much broader virtual world, with almost limitless creation and interaction possibilities. However, this proved much more difficult in practice.

Both Meta and Microsoft started investing significantly in the Metaverse at around the same time, with Microsoft completing its acquisition of Activision Blizzard – a gaming company that creates virtual world games such as World of Warcraft – in 2023 and working with Epic Games to bring Fortnite to their Xbox cloud gaming platform.

But limited adoption of new Metaverse technology saw both Meta and Microsoft announce major layoffs and cutbacks on their Metaverse investments.

Open Garden Metaverse

One of the major issues for the big Metaverse vision is that it requires an open-garden Metaverse. Matthew Ball defined this kind of Metaverse in his 2022 book:

“A massively scaled and interoperable network of real-time rendered 3D virtual worlds that can be experienced synchronously and persistently by an effectively unlimited number of users with an individual sense of presence, and with continuity of data, such as identity, history, entitlements, objects, communication, and payments.”

This vision requires an open Metaverse, a virtual world beyond any single company’s walled garden that allows interaction across platforms. With the current technology and state of the market, this is believed to be at least 10 years away.

With that in mind, Zuckerberg and Meta have pivoted away from expanding their Metaverse towards delivering devices such as AI glasses with augmented reality capabilities and virtual reality headsets.

Nevertheless, the Metaverse is still expanding today, but within walled garden contexts. Francesco pointed to Pokémon Go and Roblox as examples of Metaverse-esque words with enormous engagement and popularity.

Brands Engaging with the Metaverse: Nike Case Study

What does that mean for brands? Should they ignore the Metaverse until it becomes a more realistic proposition, or should they be establishing their Meta presence now?

Francesco used Nike’s successful approach to Meta engagement to show how brands can leverage the Metaverse today.

He pointed out that this was a strategic move from Nike to protect their brand. As a cultural phenomenon, people will naturally bring their affinity with Nike into the virtual space with them. If Nike doesn’t constantly monitor that presence, they can lose control of it. Rather than see this as a threat, Nike identified it as an opportunity. As people engage more online, their virtual appearance can become even more important than their physical appearance. Therefore, there is a space for Nike to occupy in this virtual world as a cultural icon.

Nike chose an ad hoc approach, going to users where they are and providing experiences within popular existing platforms.

As more than 1.5 million people play Fortnite every day, Nike started there, first selling a variety of virtual shoes that users can buy to kit out their avatars.

Roblox similarly has around 380 million monthly active users, so Nike entered the space and created NIKELAND, a purpose-built virtual area that offers a unique brand experience in the virtual world. For example, during NBA All-Star Week, LeBron James visited NIKELAND, where he coached and engaged with players. During the FIFA World Cup, NIKELAND let users claim two free soccer jerseys to show support for their favorite teams. According to statistics published at the end of 2023, in less than two years, NIKELAND had more than 34.9 million visitors, with over 13.4 billion hours of engagement and $185 million in NFT (non-fungible tokens or unique digital assets) sales.

Final Thoughts

Francesco concluded by discussing that while Nike has been successful in the Metaverse, this is not necessarily a success that will be simple for smaller brands to replicate. Nike was successful in the virtual world because they are a cultural phenomenon, and the Metaverse is a combination of technology and culture.

Therefore, brands today must decide how to engage with the current state of the Metaverse and prepare for its potential future expansion. Because existing Metaverses are walled gardens, brands also need to decide which Metaverses warrant investment or whether it is worth creating their own dedicated platforms. This all comes down to an appetite for risk.

Facing these types of challenges comes down to understanding the business potential of new technologies and making decisions based on risk and opportunity. OPIT’s BSc in Digital Business and MSc in Digital Business and Innovation help develop these skills, with Francesco also serving as program chair.

Read the article