If we think of “computer science” as an umbrella term for so many aspects of computing today, its importance is immediately apparent. Artificial intelligence (and the programming that lies behind it) falls into the computer science category. The same goes for machine learning, data science, networking, cybersecurity, and so many other elements of what make modern computing technology tick.

You need a solid grounding in computer science – both general concepts and theory – to move into one of these areas of specialization. And if you need to get that grounding on a budget, these free computer science courses teach you what you need to know and come with a handy certification.

Top Free Certified Computer Science Online Courses

As surprising as it may seem, you don’t have to pay money to get an education in computer science that employers actually care about. Free courses exist. And many of these free online computer science courses deliver a certification that proves your knowledge and comes from an institution that employers respect.

Course 1 – CS50: Introduction to Computer Science (Harvard University)

We’re stretching the definition of “free and certified” with the first course on the list. Though it’s free to take (and you get an audit of your performance without paying a penny), the verified certification for Harvard’s CS50 course costs $189 (approx. €175).

Assuming you’re willing to part with the cash, this course gives you a certificate from one of the United States’ most respected institutions, in addition to a crash course in computer science fundamentals. Over 11 weeks of self-paced learning (you’ll need to commit at least 10 hours per week to the course) you’ll develop a fundamental understanding of computer science and the programming that underpins it.

Concepts covered include data structures, abstraction, web development, and algorithms, creating a course that melds the math of modern computing with the theoretical concepts you’ll apply in the real world. Prospective programmers enjoy some diversity, too, as the course teaches the basics of several languages. Python, C, JavaScript, and HTML are all covered, though not in enough detail for you to achieve mastery in any of them. Still, as online certified courses for computer science go, CS50 delivers a prestigious certificate and exposes you to ambitious peers who may offer networking potential beyond the course content.

Course 2 – CS50’s Computer Science for Business Professionals (Harvard University)

It’s hard to look beyond Harvard when it comes to free computer science courses because you’re getting education and certification from a top university. With CS50 Computer Science for Business Professionals, Harvard moves beyond the tech-centric approach of its usual CS50 course to demonstrate how computer science principles apply in a real-world setting.

It’s a short course, clocking in at six weeks of study and only requiring two-to-six hours of work per week. That makes it perfect for professionals who want to boost their knowledge without a full-time commitment. You’ll tackle more high-level concepts in computer science, including the fundamentals of cloud computing and how to build technology stacks. All of which makes this like a speed run through of what you need to know about computing on a business level.

That’s not to say you won’t learn any technical theory. Several programming languages are covered (albeit in short-form style), as are the basics of computational thinking. But like CS50 above, certification comes at a cost, even if the course itself is free. Paying for an optional upgrade with EDX (through which the course is offered) is the only way to nab your certificate, if you do get a free course audit to demonstrate completion regardless.

Course 3 – Introduction to Computer Science and Programming Using Python (Massachusetts Institute of Technology)

Offered in conjunction with the EDX platform, this computer science online course takes a Python-focused approach to its teaching. Unlike CS50, which covers a wide range of topics in brief, MIT’s course focuses on how computer science is like a tool that you can use to create software and algorithms. Python 3.5 is the technology behind that tool and you’ll learn how to use it by examining and analyzing real-world problems.

The nine-week course starts by demonstrating the basics of Python (some self-learning and expansion of these concepts may be required) before moving into algorithms. Once you’ve gotten to grips with basic algorithm creation, you’ll learn how to test what you create and how those algorithms become the building blocks of complex data structures.

You have to make a substantial time commitment with this course, with MIT requiring you to spend at least 14 hours per week on your studies if you wish to stick to the nine-week schedule. And though effective in teaching you the basics of Python, the course is really a primer for a second MIT course – Introduction to Computational Thinking and Data Science – that requires payment. But it’s a useful course as a standalone product, but you’ll have to pay a fee to EDX if you want a course-centric certificate.

Factors to Consider When Choosing a Free Certified Computer Science Online Course

The trio of free online computer science courses discussed above each offer something different. Depending on your choice, you’ll get a bottom-up crash course in the theory, a practical understanding of how computer science works in a business context, or an in-depth guide to using Python. But when choosing between the three courses above (or any other courses you find) you must consider the following factors.

The Course Content and Its Relevance to Your Goals

The big question here is – what do you want to achieve with the course?

Sure, having a certificate, especially one with a major university’s name on it, is nice. But if that certificate demonstrates that you’ve learned skills that you don’t need for your intended career path then it’s not worth the paper it’s printed on.

Think of choosing a course like making an investment on which you expect a return. Outline your goals – both learning-centric and career-based – for taking the course. Then, find a course that helps you to reach those goals through laser-focused learning on topics you’ll use in the future.

Course Duration and Flexibility

For a young learner without full-time work or family commitments, taking on a computer science online course that requires months of study may not be a big deal. But that’s not the case for everybody. If you have limited hours available during the week, you need a course that you can fit into those hours rather than one that forces you to fit your life around the course.

Thankfully, most free online computer science courses make allowances for schedule flexibility by taking a self-paced learning approach. You’ll get access to all of the course resources upfront, allowing you to choose when you study. You may be able to get ahead during one week in preparation for a week where you know you can’t commit as much time, giving you the flexibility you need to fit the course into your schedule.

The Instructors and Their Expertise

Would you want to learn the theory of how to pilot a plane from somebody who’s never been up in the air? Of course you wouldn’t, and you must adopt the same attitude when choosing a computer science course.

Check the faculty list associated with the course (most reputable courses tell you who created them) and dig into their individual credentials. What have they done in the computer science industry? Where did they learn what they know? The answers to these questions tell you if your instructors and, by extension, your course are credible.

The Value of the Certification

When it comes to certification, look beyond the website that offers the course and instead focus on the institution that created it. For example, CS50’s Computer Science for Business Professionals is offered via the EDX platform, which doesn’t mean much to potential employers. But that certificate comes with a stamp of approval from Harvard University, which is a school that’s going to immediately raise eyebrows if it’s on your CV.

The point is that reputation matters, though it’s the reputation of the course creator that matters above that of the course platform. The more prestigious the name on the piece of paper, the more valuable the certificate is in the eyes of employers.

Tips for Successfully Completing a Free Certified Computer Science Online Course

With the tips for sifting through the sands of free computer science courses established, let’s round things off with some quick tips that’ll help you succeed in your studies:

  • Set clear goals for your education from the outset, with those goals aligning with your current experience level and desired outcomes.
  • Create a study schedule that fits around your commitments and stick to it as closely as you can.
  • Don’t skip assignments or practical sessions because everything included in the course is there to teach you something valuable.
  • Engage with the course community both to get advice from your peers and to potentially create networking opportunities.
  • Dedicate time to revision and research when preparing for exams or practical assessments to ensure you fully understand the course content.

Get Certified for Free and Improve Your Job Prospects

Given the importance of computer science to modern business – even the simplest of companies use software and have networks – it’s reasonable to want to build your knowledge of the subject. Free online computer science courses allow you to do that in exchange for a time commitment, with many allowing you to inject some flexibility into your study schedule.

Explore the three courses highlighted here, and look beyond them to more specialized courses once you’re confident in the foundational knowledge you’ve built. And remember – even a certificate from a free course has value in the job market if that course was created by a recognized institution.

Related posts

CCN: Australia Tightens Crypto Oversight as Exchanges Expand, Testing Industry’s Appetite for Regulation
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 3 min read

Source:

  • CCN, published on March 29th, 2025

By Kurt Robson

Over the past few months, Australia’s crypto industry has undergone a rapid transformation following the government’s proposal to establish a stricter set of digital asset regulations.

A series of recent enforcement measures and exchange launches highlight the growing maturation of Australia’s crypto landscape.

Experts remain divided on how the new rules will impact the country’s burgeoning digital asset industry.

New Crypto Regulation

On March 21, the Treasury Department said that crypto exchanges and custody services will now be classified under similar rules as other financial services in the country.

“Our legislative reforms will extend existing financial services laws to key digital asset platforms, but not to all of the digital asset ecosystem,” the Treasury said in a statement.

The rules impose similar regulations as other financial services in the country, such as obtaining a financial license, meeting minimum capital requirements, and safeguarding customer assets.

The proposal comes as Australian Prime Minister Anthony Albanese’s center-left Labor government prepares for a federal election on May 17.

Australia’s opposition party, led by Peter Dutton, has also vowed to make crypto regulation a top priority of the government’s agenda if it wins.

Australia’s Crypto Growth

Triple-A data shows that 9.6% of Australians already own digital assets, with some experts believing new rules will push further adoption.

Europe’s largest crypto exchange, WhiteBIT, announced it was entering the Australian market on Wednesday, March 26.

The company said that Australia was “an attractive landscape for crypto businesses” despite its complexity.

In March, Australia’s Swyftx announced it was acquiring New Zealand’s largest cryptocurrency exchange for an undisclosed sum.

According to the parties, the merger will create the second-largest platform in Australia by trading volume.

“Australia’s new regulatory framework is akin to rolling out the welcome mat for cryptocurrency exchanges,” Alexander Jader, professor of Digital Business at the Open Institute of Technology, told CCN.

“The clarity provided by these regulations is set to attract a wave of new entrants,” he added.

Jader said regulatory clarity was “the lifeblood of innovation.” He added that the new laws can expect an uptick “in both local and international exchanges looking to establish a foothold in the market.”

However, Zoe Wyatt, partner and head of Web3 and Disruptive Technology at Andersen LLP, believes that while the new rules will benefit more extensive exchanges looking for more precise guidelines, they will not “suddenly turn Australia into a global crypto hub.”

“The Web3 community is still largely looking to the U.S. in anticipation of a more crypto-friendly stance from the Trump administration,” Wyatt added.

Read the full article below:

Read the article
Agenda Digitale: Generative AI in the Enterprise – A Guide to Conscious and Strategic Use
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 6 min read

Source:


By Zorina Alliata, Professor of Responsible Artificial Intelligence e Digital Business & Innovation at OPIT – Open Institute of Technology

Integrating generative AI into your business means innovating, but also managing risks. Here’s how to choose the right approach to get value

The adoption of generative AI in the enterprise is growing rapidly, bringing innovation to decision-making, creativity and operations. However, to fully exploit its potential, it is essential to define clear objectives and adopt strategies that balance benefits and risks.

Over the course of my career, I have been fortunate to experience firsthand some major technological revolutions – from the internet boom to the “renaissance” of artificial intelligence a decade ago with machine learning.

However, I have never seen such a rapid rate of adoption as the one we are experiencing now, thanks to generative AI. Although this type of AI is not yet perfect and presents significant risks – such as so-called “hallucinations” or the possibility of generating toxic content – ​​it fills a real need, both for people and for companies, generating a concrete impact on communication, creativity and decision-making processes.

Defining the Goals of Generative AI in the Enterprise

When we talk about AI, we must first ask ourselves what problems we really want to solve. As a teacher and consultant, I have always supported the importance of starting from the specific context of a company and its concrete objectives, without inventing solutions that are as “smart” as they are useless.

AI is a formidable tool to support different processes: from decision-making to optimizing operations or developing more accurate predictive analyses. But to have a significant impact on the business, you need to choose carefully which task to entrust it with, making sure that the solution also respects the security and privacy needs of your customers .

Understanding Generative AI to Adopt It Effectively

A widespread risk, in fact, is that of being guided by enthusiasm and deploying sophisticated technology where it is not really needed. For example, designing a system of reviews and recommendations for films requires a certain level of attention and consumer protection, but it is very different from an X-ray reading service to diagnose the presence of a tumor. In the second case, there is a huge ethical and medical risk at stake: it is necessary to adapt the design, control measures and governance of the AI ​​to the sensitivity of the context in which it will be used.

The fact that generative AI is spreading so rapidly is a sign of its potential and, at the same time, a call for caution. This technology manages to amaze anyone who tries it: it drafts documents in a few seconds, summarizes or explains complex concepts, manages the processing of extremely complex data. It turns into a trusted assistant that, on the one hand, saves hours of work and, on the other, fosters creativity with unexpected suggestions or solutions.

Yet, it should not be forgotten that these systems can generate “hallucinated” content (i.e., completely incorrect), or show bias or linguistic toxicity where the starting data is not sufficient or adequately “clean”. Furthermore, working with AI models at scale is not at all trivial: many start-ups and entrepreneurs initially try a successful idea, but struggle to implement it on an infrastructure capable of supporting real workloads, with adequate governance measures and risk management strategies. It is crucial to adopt consolidated best practices, structure competent teams, define a solid operating model and a continuous maintenance plan for the system.

The Role of Generative AI in Supporting Business Decisions

One aspect that I find particularly interesting is the support that AI offers to business decisions. Algorithms can analyze a huge amount of data, simulating multiple scenarios and identifying patterns that are elusive to the human eye. This allows to mitigate biases and distortions – typical of exclusively human decision-making processes – and to predict risks and opportunities with greater objectivity.

At the same time, I believe that human intuition must remain key: data and numerical projections offer a starting point, but context, ethics and sensitivity towards collaborators and society remain elements of human relevance. The right balance between algorithmic analysis and strategic vision is the cornerstone of a responsible adoption of AI.

Industries Where Generative AI Is Transforming Business

As a professor of Responsible Artificial Intelligence and Digital Business & Innovation, I often see how some sectors are adopting AI extremely quickly. Many industries are already transforming rapidly. The financial sector, for example, has always been a pioneer in adopting new technologies: risk analysis, fraud prevention, algorithmic trading, and complex document management are areas where generative AI is proving to be very effective.

Healthcare and life sciences are taking advantage of AI advances in drug discovery, advanced diagnostics, and the analysis of large amounts of clinical data. Sectors such as retail, logistics, and education are also adopting AI to improve their processes and offer more personalized experiences. In light of this, I would say that no industry will be completely excluded from the changes: even “humanistic” professions, such as those related to medical care or psychological counseling, will be able to benefit from it as support, without AI completely replacing the relational and care component.

Integrating Generative AI into the Enterprise: Best Practices and Risk Management

A growing trend is the creation of specialized AI services AI-as-a-Service. These are based on large language models but are tailored to specific functionalities (writing, code checking, multimedia content production, research support, etc.). I personally use various AI-as-a-Service tools every day, deriving benefits from them for both teaching and research. I find this model particularly advantageous for small and medium-sized businesses, which can thus adopt AI solutions without having to invest heavily in infrastructure and specialized talent that are difficult to find.

Of course, adopting AI technologies requires companies to adopt a well-structured risk management strategy, covering key areas such as data protection, fairness and lack of bias in algorithms, transparency towards customers, protection of workers, definition of clear responsibilities regarding automated decisions and, last but not least, attention to environmental impact. Each AI model, especially if trained on huge amounts of data, can require significant energy consumption.

Furthermore, when we talk about generative AI and conversational models , we add concerns about possible inappropriate or harmful responses (so-called “hallucinations”), which must be managed by implementing filters, quality control and continuous monitoring processes. In other words, although AI can have disruptive and positive effects, the ultimate responsibility remains with humans and the companies that use it.

Read the full article below (in Italian):

Read the article