With your BSc in Computer Science achieved, you have a ton of technical knowledge in coding, systems architecture, and the general “whys” and “hows” of computing under your belt. Now, you face a dilemma, as you’re entering a field that over 150,000 people study for per year, meaning competition is rife.

That huge level of competition makes finding a new career difficult, as UK-based computer science graduates discovered in the mid-2010s when the saturation of the market led to an 11% unemployment rate. To counter that saturation, you may find the siren’s call of the business world tempts you toward continuing your studies to obtain an MBA.

So, the question is – can I do MBA after Computer Science?

This article offers the answers.

Understanding the MBA Degree

MBAs exist to equip students with the knowledge (both technical and practical) to succeed in the business world. For computer science graduates, that may mean giving them the networking and soft skills they need to turn their technical knowledge into career goldmines, or it could mean helping them to start their own companies in the computing field.

Most MBAs feature six core subjects:

  • Finance – Focused on the numbers behind a business, this subject is all about learning how to balance profits, losses, and the general costs of running a business.
  • Accounting – Building on the finance subject, accounting pulls students into the weeds when it comes to taxes, operating expenses, and running a healthy company.
  • Leadership – Soft skills are just as important as hard skills to a business student, with leadership subjects focusing on how to inspire employees and foster teamwork.
  • Economic Statistics – The subject that most closely relates to a computer science degree, economic statistics is all about processing, collecting, and interpreting technical data.
  • Accountability/Ethics – With so many fields having strict compliance criteria (coupled with the ethical conundrums that arise in any business), this subject helps students navigate potential legal and ethical minefields.
  • Marketing – Having a great product or service doesn’t always lead to business success. Marketing covers what you do to get what you have to offer into the public eye.

Beyond the six core subjects, many MBAs offer students an opportunity to specialize via additional courses in the areas that interest them most. For instance, you could take courses in entrepreneurship to bolster your leadership skills and ethical knowledge, or focus on accounting if you’re more interested in the behind-the-scenes workings of the business world.

As for career opportunities, you have a ton of paths you can follow (with your computer science degree offering more specialized career routes). Those with an MBA alone have options in the finance, executive management, and consulting fields, with more specialized roles in IT management available to those with computer science backgrounds.

Eligibility for MBA After BSc Computer Science

MBAs are attractive to prospective post-graduate students because they have fairly loose requirements, at least when compared to more specialized further studies. Most MBA courses require the following before they’ll accept a student:

  • A Bachelor’s degree in any subject, as long as that degree comes from a recognized educational institution
  • English language proficiency
    • This is often tested using either the TOEFL or IELTS tests
  • A pair of recommendation letters, which can come from employers or past teachers
  • Your statement of purpose defining why you want to study for an MBA
  • A resume
  • A Graduate Management Admissions Test (GMAT) score
    • You’ll receive a score between 200 and 800, with the aim being to exceed the average of 574.51

Interestingly, some universities offer MBAs in Computer Science, which are the ideal transitional courses for those who are wary of making the jump from a more technical field into something business-focused. Course requirements are similar to those for a standard MBA, though some universities also like to see that you have a couple of years of work experience before you apply.

Benefits of Pursuing an MBA After BSc Computer Science

So, the answer to “Can I do MBA after BSc Computer Science,” is a resounding “yes,” but we still haven’t confronted why that’s a good choice. Here are five reasons:

  • Diversify your skill set – While your skill set after completing a computer science degree is extremely technical, you may not have many of the soft skills needed to operate in a business environment. Beyond teaching leadership, management, and teamwork, a good MBA program also helps you get to grips with the numbers behind a business.
  • Expand career opportunities – There is no shortage of potential roles for computer science graduates, though the previously mentioned study data shows there are many thousands of people studying the same subject. With an MBA to complement your knowledge of computers, you open the door to career opportunities in management fields that would otherwise not be open to you.
  • Enhance leadership and management skills – Computer science can often feel like a solitary pursuit, as you spend more time behind a keyboard than you do interacting with others. MBAs are great for those who need a helping hand with their communication skills. Plus, they’re ideal for teaching the organizational aspects of running (or managing) a business.
  • Potential for higher salary and career growth – According to Indeed, the average salary in the computer science field is $103,719. Figures from Seattle University suggest those with MBAs can far exceed that average, with the figures it quotes from the industry journal Poets and Quants suggesting an average MBA salary of $140,924.

Challenges and Considerations

As loose as the academic requirements for being accepted to an MBA may be (at least compared to other subjects), there are still challenges to confront as a computer science graduate or student.

  • The time and financial investments – Forbes reports the average cost of an MBA in the United States to be $61,800. When added to the cost of your BSc in Computer Science, it’s possible you’ll face near-six-figure debt upon graduating. Couple that monetary investment with the time taken to get your MBA (it’s a full-time course) and you may have to put more into your studies than you think.
  • Balancing your technical and managerial skills – Computer science focuses on the technical side, which is only one part of an MBA. While the skills you have will come to the fore when you study accounting or economic statistics, the people-focused aspects of an MBA may be a challenge.
  • Adjusting to a new academic environment – You’re switching focus from the computer screen to a more classroom-led learning environment. Some may find this a challenge, particularly if they appreciate the less social aspects of computer science.

MBA Over Science – The Thomas Henson Story

After completing his Bachelor’s degree in computer information systems, Thomas Henson faced a choice – start a Master’s degree in science or study for his MBA. Having worked as a software engineer for six months following his graduation, he wanted to act fast to get his Masters’s done and dusted, opening up new career opportunities in the process.

Eventually, he chose an MBA and now works as a senior software engineer specializing in the Hortonworks Data Platform. On his personal blog, he shares why he chose an MBA over a Master’s degree in computer science, with his insights possibly helping others make their own choice:

  • Listen to the people around you (especially teachers and mentors) and ask them why they’ve chosen their career and study paths.
  • Compare programs (both comparing MBAs against one another and comparing MBAs to other post-graduate degrees) to see which courses serve your future ambitions best.
  • Follow your passion (James loved accounting) as the most important thing is not necessarily the post-graduate course you take. The most important thing is that you finish.

Choosing the Right MBA Program

Finding the right MBA program means taking several factors into consideration, with the following four being the most important:

  • Reputation and accreditation – The reputation of the institution you choose, as well as the accreditation it holds, plays a huge role in your decision. Think of your MBA as a recommendation. That recommendation doesn’t mean much if it comes from a random person in the street (i.e., an institution nobody knows), but it carries a lot of weight if it comes from somebody respected.
  • Curriculum and specialization – As Thomas Henson points out, what drives you most is what will lead you to the right MBA. In his case, he loved accounting enough to make an MBA a possibility, and likely pursued specializations in that area. Ask yourself what you specifically aim to achieve with your MBA and look for courses that move you closer to that goal.
  • Networking opportunities – As anybody in the business world will tell you, who you know is often as important as what you know. Look for a course that features respected lecturers and professors, as they have connections that you can exploit, and take advantage of any opportunities to go to networking events or join professional associations.
  • Financial aid and scholarships – Your access to financial aid depends on your current financial position, meaning it isn’t always available. Scholarships may be more accessible, with major institutions like Harvard and Columbia Business School offering pathways into their courses for those who meet their scholarship requirements.

Speaking of Harvard and Columbia, it’s also a good idea to research some of the top business schools, especially given that the reputation of your school is as important as the degree you earn. Major players, at least in the United States, include:

  • Harvard Business School
  • Columbia Business School
  • Wharton School of Business
  • Yale School of Management
  • Stanford Graduate School of Business

Become a Business-Minded Computer Buff

With the technical skills you earned from your BSc in Computer Science, you’ll be happy to find that the answer to “Can I do MBA after BSc Computer Science?” is “Yes.” Furthermore, it’s recommended as an MBA can equip you with soft skills, such as communication and leadership, that you may not receive from your computing studies. Ultimately, the combination of tech-centric and business skills opens the door to new career paths, with the average earnings of an MBA student outclassing those of computer science graduates.

Your choice comes down to your passion and the career you wish to pursue. If management doesn’t appeal to you, an MBA is likely a waste of time (and over $60,000), whereas those who want to apply their tech skills to the business world will get a lot more out of an MBA.

Related posts

Agenda Digitale: The Five Pillars of the Cloud According to NIST – A Compass for Businesses and Public Administrations
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 26, 2025 7 min read

Source:


By Lokesh Vij, Professor of Cloud Computing Infrastructure, Cloud Development, Cloud Computing Automation and Ops and Cloud Data Stacks at OPIT – Open Institute of Technology

NIST identifies five key characteristics of cloud computing: on-demand self-service, network access, resource pooling, elasticity, and metered service. These pillars explain the success of the global cloud market of 912 billion in 2025

In less than twenty years, the cloud has gone from a curiosity to an indispensable infrastructure. According to Precedence Research, the global market will reach 912 billion dollars in 2025 and will exceed 5.1 trillion in 2034. In Europe, the expected spending for 2025 will be almost 202 billion dollars. At the base of this success are five characteristics, identified by the NIST (National Institute of Standards and Technology): on-demand self-service, network access, shared resource pool, elasticity and measured service.

Understanding them means understanding why the cloud is the engine of digital transformation.

On-demand self-service: instant provisioning

The journey through the five pillars starts with the ability to put IT in the hands of users.

Without instant provisioning, the other benefits of the cloud remain potential. Users can turn resources on and off with a click or via API, without tickets or waiting. Provisioning a VM, database, or Kubernetes cluster takes seconds, not weeks, reducing time to market and encouraging continuous experimentation. A DevOps team that releases microservices multiple times a day or a fintech that tests dozens of credit-scoring models in parallel benefit from this immediacy. In OPIT labs, students create complete Kubernetes environments in two minutes, run load tests, and tear them down as soon as they’re done, paying only for the actual minutes.

Similarly, a biomedical research group can temporarily allocate hundreds of GPUs to train a deep-learning model and release them immediately afterwards, without tying up capital in hardware that will age rapidly. This flexibility allows the user to adapt resources to their needs in real time. There are no hard and fast constraints: you can activate a single machine and deactivate it when it is no longer needed, or start dozens of extra instances for a limited time and then release them. You only pay for what you actually use, without waste.

Wide network access: applications that follow the user everywhere

Once access to resources is made instantaneous, it is necessary to ensure that these resources are accessible from any location and device, maintaining a uniform user experience. The cloud lives on the network and guarantees ubiquity and independence from the device.

A web app based on HTTP/S can be used from a laptop, tablet or smartphone, without the user knowing where the containers are running. Geographic transparency allows for multi-channel strategies: you start a purchase on your phone and complete it on your desktop without interruptions. For the PA, this means providing digital identities everywhere, for the private sector, offering 24/7 customer service.

Broad access moves security from the physical perimeter to the digital identity and introduces zero-trust architecture, where every request is authenticated and authorized regardless of the user’s location.

All you need is a network connection to use the resources: from the office, from home or on the move, from computers and mobile devices. Access is independent of the platform used and occurs via standard web protocols and interfaces, ensuring interoperability.

Shared Resource Pools: The Economy of Scale of Multi-Tenancy

Ubiquitous access would be prohibitive without a sustainable economic model. This is where infrastructure sharing comes in.

The cloud provider’s infrastructure aggregates and shares computational resources among multiple users according to a multi-tenant model. The economies of scale of hyperscale data centers reduce costs and emissions, putting cutting-edge technologies within the reach of startups and SMBs.

Pooling centralizes patching, security, and capacity planning, freeing IT teams from repetitive tasks and reducing the company’s carbon footprint. Providers reinvest energy savings in next-generation hardware and immersion cooling research programs, amplifying the collective benefit.

Rapid Elasticity: Scaling at the Speed ​​of Business

Sharing resources is only effective if their allocation follows business demand in real time. With elasticity, the infrastructure expands or reduces resources in minutes following the load. The system behaves like a rubber band: if more power or more instances are needed to deal with a traffic spike, it automatically scales in real time; when demand drops, the additional resources are deactivated just as quickly.

This flexibility seems to offer unlimited resources. In practice, a company no longer has to buy excess servers to cover peaks in demand (which would remain unused during periods of low activity), but can obtain additional capacity from the cloud only when needed. The economic advantage is considerable: large initial investments are avoided and only the capacity actually used during peak periods is paid for.

In the OPIT cloud automation lab, students simulate a streaming platform that creates new Kubernetes pods as viewers increase and deletes them when the audience drops: a concrete example of balancing user experience and cost control. The effect is twofold: the user does not suffer slowdowns and the company avoids tying up capital in underutilized servers.

Metered Service: Transparency and Cost Governance

The dynamic scale generated by elasticity requires precise visibility into consumption and expenses : without measurement there is no governance. Metering makes every second of CPU, every gigabyte and every API call visible. Every consumption parameter is tracked and made available in transparent reports.

This data enables pay-per-use pricing , i.e. charges proportional to actual usage. For the customer, this translates into variable costs: you only pay for the resources actually consumed. Transparency helps you plan your budget: thanks to real-time data, it is easier to optimize expenses, for example by turning off unused resources. This eliminates unnecessary fixed costs, encouraging efficient use of resources.

The systemic value of the five pillars

When the five pillars work together, the effect is multiplier . Self-service and elasticity enable rapid response to workload changes, increasing or decreasing resources in real time, and fuel continuous experimentation; ubiquitous access and pooling provide global scalability; measurement ensures economic and environmental sustainability.

It is no surprise that the Italian market will grow from $12.4 billion in 2025 to $31.7 billion in 2030 with a CAGR of 20.6%. Manufacturers and retailers are migrating mission-critical loads to cloud-native platforms , gaining real-time data insights and reducing time to value .

From the laboratory to the business strategy

From theory to practice: the NIST pillars become a compass for the digital transformation of companies and Public Administration. In the classroom, we start with concrete exercises – such as the stress test of a video platform – to demonstrate the real impact of the five pillars on performance, costs and environmental KPIs.

The same approach can guide CIOs and innovators: if processes, governance and culture embody self-service, ubiquity, pooling, elasticity and measurement, the organization is ready to capture the full value of the cloud. Otherwise, it is necessary to recalibrate the strategy by investing in training, pilot projects and partnerships with providers. The NIST pillars thus confirm themselves not only as a classification model, but as the toolbox with which to build data-driven and sustainable enterprises.

Read the full article below (in Italian):

Read the article
ChatGPT Action Figures & Responsible Artificial Intelligence
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 23, 2025 6 min read

You’ve probably seen two of the most recent popular social media trends. The first is creating and posting your personalized action figure version of yourself, complete with personalized accessories, from a yoga mat to your favorite musical instrument. There is also the Studio Ghibli trend, which creates an image of you in the style of a character from one of the animation studio’s popular films.

Both of these are possible thanks to OpenAI’s GPT-4o-powered image generator. But what are you risking when you upload a picture to generate this kind of content? More than you might imagine, according to Tom Vazdar, chair of cybersecurity at the Open Institute of Technology (OPIT), in a recent interview with Wired. Let’s take a closer look at the risks and how this issue ties into the issue of responsible artificial intelligence.

Uploading Your Image

To get a personalized image of yourself back from ChatGPT, you need to upload an actual photo, or potentially multiple images, and tell ChatGPT what you want. But in addition to using your image to generate content for you, OpenAI could also be using your willingly submitted image to help train its AI model. Vazdar, who is also CEO and AI & Cybersecurity Strategist at Riskoria and a board member for the Croatian AI Association, says that this kind of content is “a gold mine for training generative models,” but you have limited power over how that image is integrated into their training strategy.

Plus, you are uploading much more than just an image of yourself. Vazdar reminds us that we are handing over “an entire bundle of metadata.” This includes the EXIF data attached to the image, such as exactly when and where the photo was taken. And your photo may have more content in it than you imagine, with the background – including people, landmarks, and objects – also able to be tied to that time and place.

In addition to this, OpenAI also collects data about the device that you are using to engage with the platform, and, according to Vazdar, “There’s also behavioral data, such as what you typed, what kind of image you asked for, how you interacted with the interface and the frequency of those actions.”

After all that, OpenAI knows a lot about you, and soon, so could their AI model, because it is studying you.

How OpenAI Uses Your Data

OpenAI claims that they did not orchestrate these social media trends simply to get training data for their AI, and that’s almost certainly true. But they also aren’t denying that access to that freely uploaded data is a bonus. As Vazdar points out, “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

OpenAI isn’t the only company using your data to train its AI. Meta recently updated its privacy policy to allow the company to use your personal information on Meta-related services, such as Facebook, Instagram, and WhatsApp, to train its AI. While it is possible to opt-out, Meta isn’t advertising that fact or making it easy, which means that most users are sharing their data by default.

You can also control what happens with your data when using ChatGPT. Again, while not well publicized, you can use ChatGPT’s self-service tools to access, export, and delete your personal information, and opt out of having your content used to improve OpenAI’s model. Nevertheless, even if you choose these options, it is still worth it to strip data like location and time from images before uploading them and to consider the privacy of any images, including people and objects in the background, before sharing.

Are Data Protection Laws Keeping Up?

OpenAI and Meta need to provide these kinds of opt-outs due to data protection laws, such as GDPR in the EU and the UK. GDPR gives you the right to access or delete your data, and the use of biometric data requires your explicit consent. However, your photo only becomes biometric data when it is processed using a specific technical measure that allows for the unique identification of an individual.

But just because ChatGPT is not using this technology, doesn’t mean that ChatGPT can’t learn a lot about you from your images.

AI and Ethics Concerns

But you might wonder, “Isn’t it a good thing that AI is being trained using a diverse range of photos?” After all, there have been widespread reports in the past of AI struggling to recognize black faces because they have been trained mostly on white faces. Similarly, there have been reports of bias within AI due to the information it receives. Doesn’t sharing from a wide range of users help combat that? Yes, but there is so much more that could be done with that data without your knowledge or consent.

One of the biggest risks is that the data can be manipulated for marketing purposes, not just to get you to buy products, but also potentially to manipulate behavior. Take, for instance, the Cambridge Analytica scandal, which saw AI used to manipulate voters and the proliferation of deepfakes sharing false news.

Vazdar believes that AI should be used to promote human freedom and autonomy, not threaten it. It should be something that benefits humanity in the broadest possible sense, and not just those with the power to develop and profit from AI.

Responsible Artificial Intelligence

OPIT’s Master’s in Responsible AI combines technical expertise with a focus on the ethical implications of AI, diving into questions such as this one. Focusing on real-world applications, the course considers sustainable AI, environmental impact, ethical considerations, and social responsibility.

Completed over three or four 13-week terms, it starts with a foundation in technical artificial intelligence and then moves on to advanced AI applications. Students finish with a Capstone project, which sees them apply what they have learned to real-world problems.

Read the article