With your BSc in Computer Science achieved, you have a ton of technical knowledge in coding, systems architecture, and the general “whys” and “hows” of computing under your belt. Now, you face a dilemma, as you’re entering a field that over 150,000 people study for per year, meaning competition is rife.

That huge level of competition makes finding a new career difficult, as UK-based computer science graduates discovered in the mid-2010s when the saturation of the market led to an 11% unemployment rate. To counter that saturation, you may find the siren’s call of the business world tempts you toward continuing your studies to obtain an MBA.

So, the question is – can I do MBA after Computer Science?

This article offers the answers.

Understanding the MBA Degree

MBAs exist to equip students with the knowledge (both technical and practical) to succeed in the business world. For computer science graduates, that may mean giving them the networking and soft skills they need to turn their technical knowledge into career goldmines, or it could mean helping them to start their own companies in the computing field.

Most MBAs feature six core subjects:

  • Finance – Focused on the numbers behind a business, this subject is all about learning how to balance profits, losses, and the general costs of running a business.
  • Accounting – Building on the finance subject, accounting pulls students into the weeds when it comes to taxes, operating expenses, and running a healthy company.
  • Leadership – Soft skills are just as important as hard skills to a business student, with leadership subjects focusing on how to inspire employees and foster teamwork.
  • Economic Statistics – The subject that most closely relates to a computer science degree, economic statistics is all about processing, collecting, and interpreting technical data.
  • Accountability/Ethics – With so many fields having strict compliance criteria (coupled with the ethical conundrums that arise in any business), this subject helps students navigate potential legal and ethical minefields.
  • Marketing – Having a great product or service doesn’t always lead to business success. Marketing covers what you do to get what you have to offer into the public eye.

Beyond the six core subjects, many MBAs offer students an opportunity to specialize via additional courses in the areas that interest them most. For instance, you could take courses in entrepreneurship to bolster your leadership skills and ethical knowledge, or focus on accounting if you’re more interested in the behind-the-scenes workings of the business world.

As for career opportunities, you have a ton of paths you can follow (with your computer science degree offering more specialized career routes). Those with an MBA alone have options in the finance, executive management, and consulting fields, with more specialized roles in IT management available to those with computer science backgrounds.

Eligibility for MBA After BSc Computer Science

MBAs are attractive to prospective post-graduate students because they have fairly loose requirements, at least when compared to more specialized further studies. Most MBA courses require the following before they’ll accept a student:

  • A Bachelor’s degree in any subject, as long as that degree comes from a recognized educational institution
  • English language proficiency
    • This is often tested using either the TOEFL or IELTS tests
  • A pair of recommendation letters, which can come from employers or past teachers
  • Your statement of purpose defining why you want to study for an MBA
  • A resume
  • A Graduate Management Admissions Test (GMAT) score
    • You’ll receive a score between 200 and 800, with the aim being to exceed the average of 574.51

Interestingly, some universities offer MBAs in Computer Science, which are the ideal transitional courses for those who are wary of making the jump from a more technical field into something business-focused. Course requirements are similar to those for a standard MBA, though some universities also like to see that you have a couple of years of work experience before you apply.

Benefits of Pursuing an MBA After BSc Computer Science

So, the answer to “Can I do MBA after BSc Computer Science,” is a resounding “yes,” but we still haven’t confronted why that’s a good choice. Here are five reasons:

  • Diversify your skill set – While your skill set after completing a computer science degree is extremely technical, you may not have many of the soft skills needed to operate in a business environment. Beyond teaching leadership, management, and teamwork, a good MBA program also helps you get to grips with the numbers behind a business.
  • Expand career opportunities – There is no shortage of potential roles for computer science graduates, though the previously mentioned study data shows there are many thousands of people studying the same subject. With an MBA to complement your knowledge of computers, you open the door to career opportunities in management fields that would otherwise not be open to you.
  • Enhance leadership and management skills – Computer science can often feel like a solitary pursuit, as you spend more time behind a keyboard than you do interacting with others. MBAs are great for those who need a helping hand with their communication skills. Plus, they’re ideal for teaching the organizational aspects of running (or managing) a business.
  • Potential for higher salary and career growth – According to Indeed, the average salary in the computer science field is $103,719. Figures from Seattle University suggest those with MBAs can far exceed that average, with the figures it quotes from the industry journal Poets and Quants suggesting an average MBA salary of $140,924.

Challenges and Considerations

As loose as the academic requirements for being accepted to an MBA may be (at least compared to other subjects), there are still challenges to confront as a computer science graduate or student.

  • The time and financial investments – Forbes reports the average cost of an MBA in the United States to be $61,800. When added to the cost of your BSc in Computer Science, it’s possible you’ll face near-six-figure debt upon graduating. Couple that monetary investment with the time taken to get your MBA (it’s a full-time course) and you may have to put more into your studies than you think.
  • Balancing your technical and managerial skills – Computer science focuses on the technical side, which is only one part of an MBA. While the skills you have will come to the fore when you study accounting or economic statistics, the people-focused aspects of an MBA may be a challenge.
  • Adjusting to a new academic environment – You’re switching focus from the computer screen to a more classroom-led learning environment. Some may find this a challenge, particularly if they appreciate the less social aspects of computer science.

MBA Over Science – The Thomas Henson Story

After completing his Bachelor’s degree in computer information systems, Thomas Henson faced a choice – start a Master’s degree in science or study for his MBA. Having worked as a software engineer for six months following his graduation, he wanted to act fast to get his Masters’s done and dusted, opening up new career opportunities in the process.

Eventually, he chose an MBA and now works as a senior software engineer specializing in the Hortonworks Data Platform. On his personal blog, he shares why he chose an MBA over a Master’s degree in computer science, with his insights possibly helping others make their own choice:

  • Listen to the people around you (especially teachers and mentors) and ask them why they’ve chosen their career and study paths.
  • Compare programs (both comparing MBAs against one another and comparing MBAs to other post-graduate degrees) to see which courses serve your future ambitions best.
  • Follow your passion (James loved accounting) as the most important thing is not necessarily the post-graduate course you take. The most important thing is that you finish.

Choosing the Right MBA Program

Finding the right MBA program means taking several factors into consideration, with the following four being the most important:

  • Reputation and accreditation – The reputation of the institution you choose, as well as the accreditation it holds, plays a huge role in your decision. Think of your MBA as a recommendation. That recommendation doesn’t mean much if it comes from a random person in the street (i.e., an institution nobody knows), but it carries a lot of weight if it comes from somebody respected.
  • Curriculum and specialization – As Thomas Henson points out, what drives you most is what will lead you to the right MBA. In his case, he loved accounting enough to make an MBA a possibility, and likely pursued specializations in that area. Ask yourself what you specifically aim to achieve with your MBA and look for courses that move you closer to that goal.
  • Networking opportunities – As anybody in the business world will tell you, who you know is often as important as what you know. Look for a course that features respected lecturers and professors, as they have connections that you can exploit, and take advantage of any opportunities to go to networking events or join professional associations.
  • Financial aid and scholarships – Your access to financial aid depends on your current financial position, meaning it isn’t always available. Scholarships may be more accessible, with major institutions like Harvard and Columbia Business School offering pathways into their courses for those who meet their scholarship requirements.

Speaking of Harvard and Columbia, it’s also a good idea to research some of the top business schools, especially given that the reputation of your school is as important as the degree you earn. Major players, at least in the United States, include:

  • Harvard Business School
  • Columbia Business School
  • Wharton School of Business
  • Yale School of Management
  • Stanford Graduate School of Business

Become a Business-Minded Computer Buff

With the technical skills you earned from your BSc in Computer Science, you’ll be happy to find that the answer to “Can I do MBA after BSc Computer Science?” is “Yes.” Furthermore, it’s recommended as an MBA can equip you with soft skills, such as communication and leadership, that you may not receive from your computing studies. Ultimately, the combination of tech-centric and business skills opens the door to new career paths, with the average earnings of an MBA student outclassing those of computer science graduates.

Your choice comes down to your passion and the career you wish to pursue. If management doesn’t appeal to you, an MBA is likely a waste of time (and over $60,000), whereas those who want to apply their tech skills to the business world will get a lot more out of an MBA.

Related posts

CCN: Australia Tightens Crypto Oversight as Exchanges Expand, Testing Industry’s Appetite for Regulation
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 3 min read

Source:

  • CCN, published on March 29th, 2025

By Kurt Robson

Over the past few months, Australia’s crypto industry has undergone a rapid transformation following the government’s proposal to establish a stricter set of digital asset regulations.

A series of recent enforcement measures and exchange launches highlight the growing maturation of Australia’s crypto landscape.

Experts remain divided on how the new rules will impact the country’s burgeoning digital asset industry.

New Crypto Regulation

On March 21, the Treasury Department said that crypto exchanges and custody services will now be classified under similar rules as other financial services in the country.

“Our legislative reforms will extend existing financial services laws to key digital asset platforms, but not to all of the digital asset ecosystem,” the Treasury said in a statement.

The rules impose similar regulations as other financial services in the country, such as obtaining a financial license, meeting minimum capital requirements, and safeguarding customer assets.

The proposal comes as Australian Prime Minister Anthony Albanese’s center-left Labor government prepares for a federal election on May 17.

Australia’s opposition party, led by Peter Dutton, has also vowed to make crypto regulation a top priority of the government’s agenda if it wins.

Australia’s Crypto Growth

Triple-A data shows that 9.6% of Australians already own digital assets, with some experts believing new rules will push further adoption.

Europe’s largest crypto exchange, WhiteBIT, announced it was entering the Australian market on Wednesday, March 26.

The company said that Australia was “an attractive landscape for crypto businesses” despite its complexity.

In March, Australia’s Swyftx announced it was acquiring New Zealand’s largest cryptocurrency exchange for an undisclosed sum.

According to the parties, the merger will create the second-largest platform in Australia by trading volume.

“Australia’s new regulatory framework is akin to rolling out the welcome mat for cryptocurrency exchanges,” Alexander Jader, professor of Digital Business at the Open Institute of Technology, told CCN.

“The clarity provided by these regulations is set to attract a wave of new entrants,” he added.

Jader said regulatory clarity was “the lifeblood of innovation.” He added that the new laws can expect an uptick “in both local and international exchanges looking to establish a foothold in the market.”

However, Zoe Wyatt, partner and head of Web3 and Disruptive Technology at Andersen LLP, believes that while the new rules will benefit more extensive exchanges looking for more precise guidelines, they will not “suddenly turn Australia into a global crypto hub.”

“The Web3 community is still largely looking to the U.S. in anticipation of a more crypto-friendly stance from the Trump administration,” Wyatt added.

Read the full article below:

Read the article
Agenda Digitale: Generative AI in the Enterprise – A Guide to Conscious and Strategic Use
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 6 min read

Source:


By Zorina Alliata, Professor of Responsible Artificial Intelligence e Digital Business & Innovation at OPIT – Open Institute of Technology

Integrating generative AI into your business means innovating, but also managing risks. Here’s how to choose the right approach to get value

The adoption of generative AI in the enterprise is growing rapidly, bringing innovation to decision-making, creativity and operations. However, to fully exploit its potential, it is essential to define clear objectives and adopt strategies that balance benefits and risks.

Over the course of my career, I have been fortunate to experience firsthand some major technological revolutions – from the internet boom to the “renaissance” of artificial intelligence a decade ago with machine learning.

However, I have never seen such a rapid rate of adoption as the one we are experiencing now, thanks to generative AI. Although this type of AI is not yet perfect and presents significant risks – such as so-called “hallucinations” or the possibility of generating toxic content – ​​it fills a real need, both for people and for companies, generating a concrete impact on communication, creativity and decision-making processes.

Defining the Goals of Generative AI in the Enterprise

When we talk about AI, we must first ask ourselves what problems we really want to solve. As a teacher and consultant, I have always supported the importance of starting from the specific context of a company and its concrete objectives, without inventing solutions that are as “smart” as they are useless.

AI is a formidable tool to support different processes: from decision-making to optimizing operations or developing more accurate predictive analyses. But to have a significant impact on the business, you need to choose carefully which task to entrust it with, making sure that the solution also respects the security and privacy needs of your customers .

Understanding Generative AI to Adopt It Effectively

A widespread risk, in fact, is that of being guided by enthusiasm and deploying sophisticated technology where it is not really needed. For example, designing a system of reviews and recommendations for films requires a certain level of attention and consumer protection, but it is very different from an X-ray reading service to diagnose the presence of a tumor. In the second case, there is a huge ethical and medical risk at stake: it is necessary to adapt the design, control measures and governance of the AI ​​to the sensitivity of the context in which it will be used.

The fact that generative AI is spreading so rapidly is a sign of its potential and, at the same time, a call for caution. This technology manages to amaze anyone who tries it: it drafts documents in a few seconds, summarizes or explains complex concepts, manages the processing of extremely complex data. It turns into a trusted assistant that, on the one hand, saves hours of work and, on the other, fosters creativity with unexpected suggestions or solutions.

Yet, it should not be forgotten that these systems can generate “hallucinated” content (i.e., completely incorrect), or show bias or linguistic toxicity where the starting data is not sufficient or adequately “clean”. Furthermore, working with AI models at scale is not at all trivial: many start-ups and entrepreneurs initially try a successful idea, but struggle to implement it on an infrastructure capable of supporting real workloads, with adequate governance measures and risk management strategies. It is crucial to adopt consolidated best practices, structure competent teams, define a solid operating model and a continuous maintenance plan for the system.

The Role of Generative AI in Supporting Business Decisions

One aspect that I find particularly interesting is the support that AI offers to business decisions. Algorithms can analyze a huge amount of data, simulating multiple scenarios and identifying patterns that are elusive to the human eye. This allows to mitigate biases and distortions – typical of exclusively human decision-making processes – and to predict risks and opportunities with greater objectivity.

At the same time, I believe that human intuition must remain key: data and numerical projections offer a starting point, but context, ethics and sensitivity towards collaborators and society remain elements of human relevance. The right balance between algorithmic analysis and strategic vision is the cornerstone of a responsible adoption of AI.

Industries Where Generative AI Is Transforming Business

As a professor of Responsible Artificial Intelligence and Digital Business & Innovation, I often see how some sectors are adopting AI extremely quickly. Many industries are already transforming rapidly. The financial sector, for example, has always been a pioneer in adopting new technologies: risk analysis, fraud prevention, algorithmic trading, and complex document management are areas where generative AI is proving to be very effective.

Healthcare and life sciences are taking advantage of AI advances in drug discovery, advanced diagnostics, and the analysis of large amounts of clinical data. Sectors such as retail, logistics, and education are also adopting AI to improve their processes and offer more personalized experiences. In light of this, I would say that no industry will be completely excluded from the changes: even “humanistic” professions, such as those related to medical care or psychological counseling, will be able to benefit from it as support, without AI completely replacing the relational and care component.

Integrating Generative AI into the Enterprise: Best Practices and Risk Management

A growing trend is the creation of specialized AI services AI-as-a-Service. These are based on large language models but are tailored to specific functionalities (writing, code checking, multimedia content production, research support, etc.). I personally use various AI-as-a-Service tools every day, deriving benefits from them for both teaching and research. I find this model particularly advantageous for small and medium-sized businesses, which can thus adopt AI solutions without having to invest heavily in infrastructure and specialized talent that are difficult to find.

Of course, adopting AI technologies requires companies to adopt a well-structured risk management strategy, covering key areas such as data protection, fairness and lack of bias in algorithms, transparency towards customers, protection of workers, definition of clear responsibilities regarding automated decisions and, last but not least, attention to environmental impact. Each AI model, especially if trained on huge amounts of data, can require significant energy consumption.

Furthermore, when we talk about generative AI and conversational models , we add concerns about possible inappropriate or harmful responses (so-called “hallucinations”), which must be managed by implementing filters, quality control and continuous monitoring processes. In other words, although AI can have disruptive and positive effects, the ultimate responsibility remains with humans and the companies that use it.

Read the full article below (in Italian):

Read the article