From the local network you’re probably using to read this article to the entirety of the internet, you’re surrounded by computer networks wherever you go.

A computer network connects at least two computer systems using a medium. Sharing the same connection protocols, the computers within such networks can communicate with each other and exchange data, resources, and applications.

In an increasingly technological world, several types of computer network have become the thread that binds modern society. They differ in size (geographic area or the number of computers), purpose, and connection modes (wired or wireless). But they all have one thing in common: they’ve fueled the communication revolution worldwide.

This article will explore the intricacies of these different network types, delving into their features, advantages, and disadvantages.

Local Area Network (LAN)

Local Area Network (LAN) is a widely used computer network type that covers the smallest geographical area (a few miles) among the three main types of computer network (LAN, MAN, and WAN).

A LAN usually relies on wired connections since they are faster than their wireless counterparts. With a LAN, you don’t have to worry about external regulatory oversight. A LAN is a privately owned network.

Looking into the infrastructure of a LAN, you’ll typically find several devices (switches, routers, adapters, etc.), many network cables (Ethernet, fiber optic, etc.), and specific internet protocols (Ethernet, TCP/IP, Wi-Fi, etc.).

As with all types of computer network, a LAN has its fair share of advantages and disadvantages.

Users who opt for a LAN usually do so due to the following reasons:

  • Setting up and managing a LAN is easy.
  • A LAN provides fast data and message transfer.
  • Even inexpensive hardware (hard disks, DVD-ROMs, etc.) can share a LAN.
  • A LAN is more secure and offers increased fault tolerance than a WAN.
  • All LAN users can share a single internet connection.

As for the drawbacks, these are some of the more concerning ones:

  • A LAN is highly limited in geographical coverage. (Any growth requires costly infrastructure upgrades.)
  • As more users connect to the network, it might get congested.
  • A LAN doesn’t offer a high degree of privacy. (The admin can see the data files of each user.)

Regardless of these disadvantages, many people worldwide use a LAN. In computer networks, no other type is as prevalent. Look at virtually any home, office building, school, laboratory, hospital, and similar facilities, and you’ll probably spot a LAN.

Wide Area Network (WAN)

Do you want to experience a Wide Area Network (WAN) firsthand? Since you’re reading this article, you’ve already done so. That’s right. The internet is one of the biggest WANs in the world.

So, it goes without saying that a WAN is a computer network that spans a large geographical area. Of course, the internet is an outstanding example; most WANs are confined within the borders of a country or even limited to an enterprise.

Considering that a WAN needs to cover a considerable distance, it isn’t surprising it relies on connections like satellite links to transmit the data. Other components of a WAN include standard network devices (routers, modems, etc.) and network protocols (TCP/IP, MPLS, etc.).

The ability of a WAN to cover a large geographical area is one of its most significant advantages. But it’s certainly not the only one.

  • A WAN offers remote access to shared software and other resources.
  • Numerous users and applications can use a WAN simultaneously.
  • A WAN facilitates easy communication between computers within the same network.
  • With WAN, all data is centralized (no need to purchase separate backup servers, emails, etc.).

Of course, as with other types of computer network, there are some disadvantages to note.

  • Setting up and maintaining a WAN is costly and challenging.
  • Due to the higher distance, there can be some issues with the slower data transfer and delays.
  • The use of multiple technologies can create security issues for the network. (A firewall, antivirus software, and other preventative security measures are a must.)

By now, you probably won’t be surprised that the most common uses of a WAN are dictated by its impressive size.

You’ll typically find WANs connecting multiple LANs, branches of the same institution (government, business, finance, education, etc.), and the residents of a city or a country (public networks, mobile broadband, fiber internet services, etc.).

Metropolitan Area Network (MAN)

A Metropolitan Area Network (MAN) interconnects different LANs to cover a larger geographical area (usually a town or a city). To put this into perspective, a MAN covers more than a LAN but less than a WAN.

A MAN offers high-speed connectivity and mainly relies on optical fibers. “Moderate” is the word that best describes a MAN’s data transfer rate and propagation delay.

You’ll need standard network devices like routers and switches to establish this network. As for transmission media, a MAN primarily relies on fiber optic cables and microwave links. The last component to consider is network protocols, which are also pretty standard (TCP/IP, Ethernet, etc.)

There are several reasons why internet users opt for a MAN in computer networks:

  • A MAN can be used as an Internet Service Provider (ISP).
  • Through a MAN, you can gain greater access to WANs.
  • A dual connectivity bus allows simultaneous data transfer both ways.

Unfortunately, this network type isn’t without its flaws.

  • A MAN can be expensive to set up and maintain. (For instance, it requires numerous cables.)
  • The more users use a MAN, the more congestion and performance issues can ensue.
  • Ensuring cybersecurity on this network is no easy task.

Despite these disadvantages, many government agencies fully trust MANs to connect to the citizens and private industries. The same goes for public services like high-speed DSL lines and cable TV networks within a city.

Personal Area Network (PAN)

The name of this network type will probably hint at how this network operates right away. In other words, a Personal Area Network (PAN) is a computer network centered around a single person. As such, it typically connects a person’s personal devices (computer, mobile phone, tablet, etc.) to the internet or a digital network.

With such focused use, geographical limits shouldn’t be surprising. A PAN covers only about 33 feet of area. To expand the reach of this low-range network, users employ wireless technologies (Wi-Fi, Bluetooth, etc.)

With these network connections and the personal devices that use the network out of the way, the only remaining components of a PAN are the network protocols it uses (TCP/IP, Bluetooth, etc.).

Users create these handy networks primarily due to their convenience. Easy setup, straightforward communications, no wires or cables … what’s not to like? Throw energy efficiency into the mix, and you’ll understand the appeal of PANs.

Of course, something as quick and easy as a PAN doesn’t go hand in hand with large-scale data transfers. Considering the limited coverage area and bandwidth, you can bid farewell to high-speed communication and handling large amounts of data.

Then again, look at the most common uses of PANs, and you’ll see that these are hardly needed. PANs come in handy for connecting personal devices, establishing an offline network at home, and connecting devices (cameras, locks, speakers, etc.) within a smart home setup.

Wireless Local Area Network (WLAN)

You’ll notice only one letter difference between WLAN and LAN. This means that this network operates similarly to a LAN, but the “W” indicates that it does so wirelessly. It extends the LAN’s reach, making a Wireless Local Area Network (WLAN) ideal for users who hate dealing with cables yet want a speedy and reliable network.

A WLAN owes its seamless operation to network connections like radio frequency and Wi-Fi. Other components that you should know about include network devices (wireless routers, access points, etc.) and network protocols (TCP/IP, Wi-Fi, etc.).

Flexible. Reliable. Robust. Mobile. Simple. Those are just some adjectives that accurately describe WLANs and make them such an appealing network type.

Of course, there are also a few disadvantages to note, especially when comparing WLANs to LANs.

WLANs offer less capacity, security, and quality than their wired counterparts. They’re also more expensive to install and vulnerable to various interferences (physical objects obstructing the signal, other WLAN networks, electronic devices, etc.).

Like LANs, you will likely see WLANs in households, office buildings, schools, and similar locations.

Virtual Private Network (VPN)

If you’re an avid internet user, you’ve probably encountered this scenario: you want to use public Wi-Fi but fear the consequences and stream specific content. Or this one may be familiar: you want to use apps, but they’re unavailable in your country. The solution for both cases is a VPN.

A Virtual Private Network, or VPN for short, uses tunneling protocols to create a private network over a less secure public network. You’ll probably have to pay to access a premium virtual connection, but this investment is well worth it.

A VPN provider typically offers servers worldwide, each a valuable component of a VPN. Besides the encrypted tunneling protocols, some VPNs use the internet itself to establish a private connection. As for network protocols, you’ll mostly see TCP/IP, SSL, and similar types.

The importance of security and privacy on the internet can’t be understated. So, a VPN’s ability to offer you these is undoubtedly its biggest advantage. Users are also fond of VPNs for unlocking geo-blocked content and eliminating pesky targeted ads.

Following in the footsteps of other types of computer network, a VPN also has a few notable flaws. Not all devices will support this network. Even when they do, privacy and security aren’t 100% guaranteed. Just think of how fast new cybersecurity threats emerge, and you’ll understand why.

Of course, these downsides don’t prevent numerous users from reaching for VPNs to secure remote access to the internet or gain access to apps hosted on proprietary networks. Users also use these networks to bypass censorship in their country or browse the internet anonymously.

Connecting Beyond Boundaries

Whether running a global corporation or wanting to connect your smartphone to the internet, there’s a perfect network among the above-mentioned types of computer network. Understanding the unique features of each network and their specific advantages and disadvantages will help you make the right choice and enjoy seamless connections wherever you are. Compare the facts from this guide to your specific needs, and you’ll pick the perfect network every time.

Related posts

Il Sole 24 Ore: Integrating Artificial Intelligence into the Enterprise – Challenges and Opportunities for CEOs and Management
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 14, 2025 6 min read

Source:


Expert Pierluigi Casale analyzes the adoption of AI by companies, the ethical and regulatory challenges and the differentiated approach between large companies and SMEs

By Gianni Rusconi

Easier said than done: to paraphrase the well-known proverb, and to place it in the increasingly large collection of critical issues and opportunities related to artificial intelligence, the task that CEOs and management have to adequately integrate this technology into the company is indeed difficult. Pierluigi Casale, professor at OPIT (Open Institute of Technology, an academic institution founded two years ago and specialized in the field of Computer Science) and technical consultant to the European Parliament for the implementation and regulation of AI, is among those who contributed to the definition of the AI ​​Act, providing advice on aspects of safety and civil liability. His task, in short, is to ensure that the adoption of artificial intelligence (primarily within the parliamentary committees operating in Brussels) is not only efficient, but also ethical and compliant with regulations. And, obviously, his is not an easy task.

The experience gained over the last 15 years in the field of machine learning and the role played in organizations such as Europol and in leading technology companies are the requirements that Casale brings to the table to balance the needs of EU bodies with the pressure exerted by American Big Tech and to preserve an independent approach to the regulation of artificial intelligence. A technology, it is worth remembering, that implies broad and diversified knowledge, ranging from the regulatory/application spectrum to geopolitical issues, from computational limitations (common to European companies and public institutions) to the challenges related to training large-format language models.

CEOs and AI

When we specifically asked how CEOs and C-suites are “digesting” AI in terms of ethics, safety and responsibility, Casale did not shy away, framing the topic based on his own professional career. “I have noticed two trends in particular: the first concerns companies that started using artificial intelligence before the AI ​​Act and that today have the need, as well as the obligation, to adapt to the new ethical framework to be compliant and avoid sanctions; the second concerns companies, like the Italian ones, that are only now approaching this topic, often in terms of experimental and incomplete projects (the expression used literally is “proof of concept”, ed.) and without these having produced value. In this case, the ethical and regulatory component is integrated into the adoption process.”

In general, according to Casale, there is still a lot to do even from a purely regulatory perspective, due to the fact that there is not a total coherence of vision among the different countries and there is not the same speed in implementing the indications. Spain, in this regard, is setting an example, having established (with a royal decree of 8 November 2023) a dedicated “sandbox”, i.e. a regulatory experimentation space for artificial intelligence through the creation of a controlled test environment in the development and pre-marketing phase of some artificial intelligence systems, in order to verify compliance with the requirements and obligations set out in the AI ​​Act and to guide companies towards a path of regulated adoption of the technology.

Read the full article below (in Italian):

Read the article
CCN: Australia Tightens Crypto Oversight as Exchanges Expand, Testing Industry’s Appetite for Regulation
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 3 min read

Source:

  • CCN, published on March 29th, 2025

By Kurt Robson

Over the past few months, Australia’s crypto industry has undergone a rapid transformation following the government’s proposal to establish a stricter set of digital asset regulations.

A series of recent enforcement measures and exchange launches highlight the growing maturation of Australia’s crypto landscape.

Experts remain divided on how the new rules will impact the country’s burgeoning digital asset industry.

New Crypto Regulation

On March 21, the Treasury Department said that crypto exchanges and custody services will now be classified under similar rules as other financial services in the country.

“Our legislative reforms will extend existing financial services laws to key digital asset platforms, but not to all of the digital asset ecosystem,” the Treasury said in a statement.

The rules impose similar regulations as other financial services in the country, such as obtaining a financial license, meeting minimum capital requirements, and safeguarding customer assets.

The proposal comes as Australian Prime Minister Anthony Albanese’s center-left Labor government prepares for a federal election on May 17.

Australia’s opposition party, led by Peter Dutton, has also vowed to make crypto regulation a top priority of the government’s agenda if it wins.

Australia’s Crypto Growth

Triple-A data shows that 9.6% of Australians already own digital assets, with some experts believing new rules will push further adoption.

Europe’s largest crypto exchange, WhiteBIT, announced it was entering the Australian market on Wednesday, March 26.

The company said that Australia was “an attractive landscape for crypto businesses” despite its complexity.

In March, Australia’s Swyftx announced it was acquiring New Zealand’s largest cryptocurrency exchange for an undisclosed sum.

According to the parties, the merger will create the second-largest platform in Australia by trading volume.

“Australia’s new regulatory framework is akin to rolling out the welcome mat for cryptocurrency exchanges,” Alexander Jader, professor of Digital Business at the Open Institute of Technology, told CCN.

“The clarity provided by these regulations is set to attract a wave of new entrants,” he added.

Jader said regulatory clarity was “the lifeblood of innovation.” He added that the new laws can expect an uptick “in both local and international exchanges looking to establish a foothold in the market.”

However, Zoe Wyatt, partner and head of Web3 and Disruptive Technology at Andersen LLP, believes that while the new rules will benefit more extensive exchanges looking for more precise guidelines, they will not “suddenly turn Australia into a global crypto hub.”

“The Web3 community is still largely looking to the U.S. in anticipation of a more crypto-friendly stance from the Trump administration,” Wyatt added.

Read the full article below:

Read the article