The journey towards building ethical AI is challenging, yet it also presents an opportunity to shape a future where technology serves as a force for good

By Riccardo Ocleppo, March 14th 2024

Source here:eCampus News


In the exponentially-evolving realm of artificial intelligence (AI), concerns surrounding AI bias have risen to the forefront, demanding a collective effort towards fostering ethical AI practices. This necessitates understanding the multifaceted causes and potential ramifications of AI bias, exploring actionable solutions, and acknowledging the key role of higher education institutions in this endeavor.

Unveiling the roots of AI bias

AI bias is the inherent, often systemic, unfairness embedded within AI algorithms. These biases can stem from various sources, with data used to train AI models often acting as the primary culprit. If this data reflects inequalities or societal prejudices, it can unintentionally translate into skewed algorithms perpetuating those biases. But bias can also work the other way around: take the recent case of bias by Google Gemini, where the generative AI created by Google, biased by the necessity of more inclusiveness, actually generated responses and images that have nothing to do with the reality it was prompted to depict.

Furthermore, the complexity of AI models, frequently characterized by intricate algorithms and opaque decision-making processes, compounds the issue. The very nature of these models makes pinpointing and rectifying embedded biases a significant challenge.

Mitigating the impact: Actionable data practices

Actionable data practices are essential to address these complexities. Ensuring diversity and representativeness within training datasets is a crucial first step. This involves actively seeking data encompassing a broad spectrum of demographics, cultures, and perspectives, ensuring the AI model doesn’t simply replicate existing biases.

In conjunction with diversifying data, rigorous testing across different demographic groups is vital. Evaluating the AI model’s performance across various scenarios unveils potential biases that might otherwise remain hidden. Additionally, fostering transparency in AI algorithms and their decision-making processes is crucial. By allowing for scrutiny and accountability, transparency empowers stakeholders to assess whether the AI functions unbiasedly.

The ongoing journey of building ethical AI

Developing ethical AI is not a one-time fix; it requires continuous vigilance and adaptation. This ongoing journey necessitates several key steps:

  • Establishing ethical guidelines: Organizations must clearly define ethical standards for AI development and use, reflecting fundamental values such as fairness, accountability, and transparency. These guidelines serve as a roadmap, ensuring AI projects align with ethical principles.
  • Creating multidisciplinary teams: Incorporating diverse perspectives into AI development is crucial. Teams of technologists, ethicists, sociologists, and individuals representing potentially impacted communities can anticipate and mitigate biases through broader perspectives.
  • Fostering an ethical culture: Beyond establishing guidelines and assembling diverse teams, cultivating an organizational culture prioritizes ethical considerations in all AI projects is essential. Embedding ethical principles into an organization’s core values and everyday practices ensures ethical considerations are woven into the very fabric of AI development.

The consequences of unchecked bias

Ignoring the potential pitfalls of AI bias can lead to unintended and often profound consequences, impacting various aspects of our lives. From reinforcing social inequalities to eroding trust in AI systems, unchecked bias can foster widespread skepticism and resistance toward technological advancements.

Moreover, biased AI can inadvertently influence decision-making in critical areas such as healthcare, employment, and law enforcement. Imagine biased algorithms used in loan applications unfairly disadvantaging certain demographics or in facial recognition software incorrectly identifying individuals, potentially leading to unjust detentions. These are just a few examples of how unchecked AI bias can perpetuate inequalities and create disparities.

The role of higher education in fostering change

Higher education institutions have a pivotal role to play in addressing AI bias and fostering the development of ethical AI practices:

  • Integrating ethics into curricula: By integrating ethics modules into AI and computer science curricula, universities can equip future generations of technologists with the necessary tools and frameworks to identify, understand, and combat AI bias. This empowers them to develop and deploy AI responsibly, ensuring their creations are fair and inclusive.
  • Leading by example: Beyond educating future generations, universities can also lead by example through their own research initiatives. Research institutions are uniquely positioned to delve into the complex challenges of AI bias, developing innovative solutions for bias detection and mitigation. Their research can inform and guide broader efforts towards building ethical AI.
  • Fostering interdisciplinary collaboration: The multifaceted nature of AI bias necessitates a collaborative approach. Universities can convene experts from various fields, including computer scientists, ethicists, legal scholars, and social scientists, to tackle the challenges of AI bias from diverse perspectives. This collaborative spirit can foster innovative and comprehensive solutions.
  • Facilitating public discourse: Universities, as centers of knowledge and critical thinking, can serve as forums for public discourse on ethical AI. They can facilitate conversations between technologists, policymakers, and the broader community through dialogues, workshops, and conferences. This public engagement is crucial for raising awareness, fostering understanding, and promoting responsible development and deployment of AI.

Several universities and higher education institutions, wallowing in the above principles, have created technical degrees in artificial intelligence shaping the artificial intelligence professionals of tomorrow by combining advanced technical skills in AI areas such as machine learning, computer vision, and natural language processing while developing in each one of them ethical and human-centered implications.

Also, we are seeing prominent universities throughout the globe (more notably, Yale and Oxford) creating research departments on AI and ethics.

Conclusion

The journey towards building ethical AI is challenging, yet it also presents an opportunity to shape a future where technology serves as a force for good. By acknowledging the complex causes of AI bias, adopting actionable data practices, and committing to the ongoing effort of building ethical AI, we can mitigate the unintended consequences of biased algorithms. With their rich reservoir of knowledge and expertise, higher education institutions are at the forefront of this vital endeavor, paving the way for a more just and equitable digital age.

Related posts

Il Sole 24 Ore: Integrating Artificial Intelligence into the Enterprise – Challenges and Opportunities for CEOs and Management
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 14, 2025 6 min read

Source:


Expert Pierluigi Casale analyzes the adoption of AI by companies, the ethical and regulatory challenges and the differentiated approach between large companies and SMEs

By Gianni Rusconi

Easier said than done: to paraphrase the well-known proverb, and to place it in the increasingly large collection of critical issues and opportunities related to artificial intelligence, the task that CEOs and management have to adequately integrate this technology into the company is indeed difficult. Pierluigi Casale, professor at OPIT (Open Institute of Technology, an academic institution founded two years ago and specialized in the field of Computer Science) and technical consultant to the European Parliament for the implementation and regulation of AI, is among those who contributed to the definition of the AI ​​Act, providing advice on aspects of safety and civil liability. His task, in short, is to ensure that the adoption of artificial intelligence (primarily within the parliamentary committees operating in Brussels) is not only efficient, but also ethical and compliant with regulations. And, obviously, his is not an easy task.

The experience gained over the last 15 years in the field of machine learning and the role played in organizations such as Europol and in leading technology companies are the requirements that Casale brings to the table to balance the needs of EU bodies with the pressure exerted by American Big Tech and to preserve an independent approach to the regulation of artificial intelligence. A technology, it is worth remembering, that implies broad and diversified knowledge, ranging from the regulatory/application spectrum to geopolitical issues, from computational limitations (common to European companies and public institutions) to the challenges related to training large-format language models.

CEOs and AI

When we specifically asked how CEOs and C-suites are “digesting” AI in terms of ethics, safety and responsibility, Casale did not shy away, framing the topic based on his own professional career. “I have noticed two trends in particular: the first concerns companies that started using artificial intelligence before the AI ​​Act and that today have the need, as well as the obligation, to adapt to the new ethical framework to be compliant and avoid sanctions; the second concerns companies, like the Italian ones, that are only now approaching this topic, often in terms of experimental and incomplete projects (the expression used literally is “proof of concept”, ed.) and without these having produced value. In this case, the ethical and regulatory component is integrated into the adoption process.”

In general, according to Casale, there is still a lot to do even from a purely regulatory perspective, due to the fact that there is not a total coherence of vision among the different countries and there is not the same speed in implementing the indications. Spain, in this regard, is setting an example, having established (with a royal decree of 8 November 2023) a dedicated “sandbox”, i.e. a regulatory experimentation space for artificial intelligence through the creation of a controlled test environment in the development and pre-marketing phase of some artificial intelligence systems, in order to verify compliance with the requirements and obligations set out in the AI ​​Act and to guide companies towards a path of regulated adoption of the technology.

Read the full article below (in Italian):

Read the article
CCN: Australia Tightens Crypto Oversight as Exchanges Expand, Testing Industry’s Appetite for Regulation
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 3 min read

Source:

  • CCN, published on March 29th, 2025

By Kurt Robson

Over the past few months, Australia’s crypto industry has undergone a rapid transformation following the government’s proposal to establish a stricter set of digital asset regulations.

A series of recent enforcement measures and exchange launches highlight the growing maturation of Australia’s crypto landscape.

Experts remain divided on how the new rules will impact the country’s burgeoning digital asset industry.

New Crypto Regulation

On March 21, the Treasury Department said that crypto exchanges and custody services will now be classified under similar rules as other financial services in the country.

“Our legislative reforms will extend existing financial services laws to key digital asset platforms, but not to all of the digital asset ecosystem,” the Treasury said in a statement.

The rules impose similar regulations as other financial services in the country, such as obtaining a financial license, meeting minimum capital requirements, and safeguarding customer assets.

The proposal comes as Australian Prime Minister Anthony Albanese’s center-left Labor government prepares for a federal election on May 17.

Australia’s opposition party, led by Peter Dutton, has also vowed to make crypto regulation a top priority of the government’s agenda if it wins.

Australia’s Crypto Growth

Triple-A data shows that 9.6% of Australians already own digital assets, with some experts believing new rules will push further adoption.

Europe’s largest crypto exchange, WhiteBIT, announced it was entering the Australian market on Wednesday, March 26.

The company said that Australia was “an attractive landscape for crypto businesses” despite its complexity.

In March, Australia’s Swyftx announced it was acquiring New Zealand’s largest cryptocurrency exchange for an undisclosed sum.

According to the parties, the merger will create the second-largest platform in Australia by trading volume.

“Australia’s new regulatory framework is akin to rolling out the welcome mat for cryptocurrency exchanges,” Alexander Jader, professor of Digital Business at the Open Institute of Technology, told CCN.

“The clarity provided by these regulations is set to attract a wave of new entrants,” he added.

Jader said regulatory clarity was “the lifeblood of innovation.” He added that the new laws can expect an uptick “in both local and international exchanges looking to establish a foothold in the market.”

However, Zoe Wyatt, partner and head of Web3 and Disruptive Technology at Andersen LLP, believes that while the new rules will benefit more extensive exchanges looking for more precise guidelines, they will not “suddenly turn Australia into a global crypto hub.”

“The Web3 community is still largely looking to the U.S. in anticipation of a more crypto-friendly stance from the Trump administration,” Wyatt added.

Read the full article below:

Read the article