As a well-known programming language, Python dominates the data science field. Its prominence in the industry represents the main reason why so many job offers include Python skills as a hard requirement.

Of course, all of the hype around Python has practical ramifications. This programming language is suitable for people without a programming background. If you have a sufficient grasp of technology, chances are you’ll get how Python works in a few weeks.

Besides being beginner-friendly, Python is practically built for math and statistical analysis. Plus, data visualization becomes nearly effortless when you use specific Python libraries dedicated to the task.

The point is that Python makes numerous data science tasks and operations easier. If you’re interested in data science, learning this versatile programming language will take your professional development to a new level.

Fortunately, you can find plenty of courses teaching everything from the basics to advanced functions in Python. Let’s look at the best Python data science tutorial and course options.

Factors to Consider When Choosing a Python Data Science Course

Before you start a particular course, it would be best to consider the specifics. The criteria that should guide your decision include:

  • The content of the course: Some courses will be introductory, while others will offer advanced lessons. You should start with a course that aligns with your proficiency level.
  • Instructor’s expertise: Ideally, you’ll want an industry expert to teach you about Python. Experienced lecturers or proven professionals will know all of the ins and outs, and they’ll be able to transfer that knowledge to you.
  • Course duration and flexibility: If you’re looking for a course, you don’t want an experience that will last an entire year. On the other hand, you shouldn’t expect too much from an hour-long course. Additionally, the course structure should be flexible enough to allow you to complete it at your own pace.
  • Practical projects and applications: Python is a living programming language that sees plenty of use in the real world. On that note, the course you take should offer a hands-on experience and show you how to apply your new knowledge in practice.
  • Course reviews and ratings: Although this shouldn’t be your primary clue when making a decision, taking a look at what others say about the course certainly won’t hurt. You’ll want to stay away from courses with mostly negative reviews, especially if the reviewers make unsubstantiated claims.
  • Pricing and value: Course pricing may vary from ludicrously expensive to free. While our list doesn’t include any outrageously overpriced courses, you’ll find a quality free one in there. The bottom line here is straightforward: Does the course fit in with your budget and what do you get for the price?

Top Python Data Science Courses and Tutorials

ILX Group – Python E-Learning

This Python data science course deals with the basic functionality of the programming language and teaches you how to apply it in practice. It contains in-depth information about command running, dictionaries, methods, and shell scripting. No final exam is necessary to complete the course.

Key Topics

  • The basics of Python programming
  • File and data operations
  • Logging and test infrastructure
  • Conditional statements
  • Networking
  • Shell scripting
  • Django web framework

Instructor’s Background

Information about the instructor for this course isn’t available on ILX Group.

Course Duration and Format

The course is in e-learning format and is delivered entirely online. It will take you about eight hours to complete. Instead of a final exam, you’ll complete the course by submitting the required project that must meet specific set criteria.

Pricing and Enrollment

Enrolling in this course will cost €450 +VAT. You won’t need to fulfill any additional requirements to make a start. Paying the one-time fee will grant you a full year of access to the course resources.

Pros

  • Provides a solid foundation for Python programming
  • No limitations on enrollment or availability
  • Offers practical knowledge and projects

Cons

  • E-learning tools used throughout the course aren’t defined
  • No information about the instructor or their credentials

Python Institute – Data Analysis Essentials With Python

The Python Institute is a group devoted to Python education. The Data Analysis Essentials with Python is only one of the courses this institution provides. It’s an intermediate-level program focused on data analysis using the tools within the Python programming language.

Key Topics

  • Data analysis
  • Algorithmic and analytical thinking
  • Data visualization
  • Statistics
  • Data mining and modeling
  • Programming
  • Data-based decision-making

Instructor’s Background

No instructor information can be found on the Python Institute site regarding this particular course. However, it’s worth mentioning that the institute is run by industry experts with substantial experience in the IT sector. These experts are also responsible for the institute courses.

Course Duration and Format

The Data Analysis Essentials with Python course will last for up to six weeks, provided you devote about eight hours weekly to studying the material. The course is delivered online.

Pricing and Enrollment

One of the greatest advantages of this course is its pricing: Data Analysis Essentials with Python is completely free. However, this course isn’t for beginners. You’ll need previous knowledge of the key concepts in Python programming. The Python Institute recommends completing their beginner courses or coming into this program with some experience.

Pros

  • Course designed by industry professionals
  • Free for all users
  • May serve as a preparatory course for Python Certified Associate in Data Analytics (PCAD) certification

Cons

  • No information about the lecturer
  • Exact delivery methods aren’t specified

Python-Course – Fundamental Python Course

The Fundamental Python Course is designed as a comprehensive introduction to programming methods in Python. The course will take you through the fundamentals of the programming language and include practical solutions in the Python environment.

Key Topics

  • Python introductory lessons
  • Script editing and execution
  • Working in the Python shell
  • Expressions, operators, assignments, and variables
  • Dictionaries, stacks, loops, and lists
  • Handling files and exceptions
  • Conditional statements
  • Packages and modules

Instructor’s Background

The instructor for live courses is Bernd Klein. A Python expert with a Saarland University diploma in Computer Science, specializing in computer languages, Klein has taught at the Saarland University, EWH, Koblenz, and the University of Freiburg, where he still holds a teaching position.

Klein is also the founder of the programming language teaching platform, Bodenseo.

Course Duration and Format

The course lasts for five days and includes a live class format. While Klein usually holds classes in person, courses are currently provided online. To participate on this course, you’ll need a network-ready computer with a microphone. No additional software is needed.

Pricing and Enrollment

The on-site variant of the course costs €1,450 per day, while open classes start from €349 daily. There are no other requirements for the course.

Pros

  • Taught by an experienced lecturer
  • Offers a complete coverage of Python-related subjects
  • Advanced optional topics

Cons

  • Very pricey compared to the competitors
  • Doesn’t provide a certificate

Additional Resources for Mastering Python Data Science

If you want an alternative to an actual Python data science course, you may wish to turn to other resources that will help you master the subject. In particular, these would be books and digital resources like forums, eBooks, podcasts, YouTube channels, websites, and blogs.

For some of the best Python forums and online communities, check out the following:

Great books on Python include:

  • Head-First Python, by Paul Barry
  • Think Python, by Allen B. Downey
  • Learn Python 3 the Hard Way, by Zed A. Shaw
  • Python Crash Course, by Eric Matthes

If printed media isn’t your style, you can find an excellent list of free Python eBooks on Codeburst.io.

On the other hand, you might not want to read too much while learning Python. In that case, you’ll be glad to learn that there are numerous podcasts on the subject that you can tune in to right now:

Unsurprisingly, YouTube also has plenty of Python data science course and tutorial channels. Here are our top picks:

  • The New Boston
  • Sentdex
  • Real Python
  • PyCon – This isn’t a particular YouTube channel, but rather a search query. Browse the search results on YouTube, and you’ll find videos for Python-dedicated conferences from around the world.
  • Michael Kennedy

Finally, there’s an abundance of blogs and websites dedicated to Python resources and knowledge:

Learn to Program in Python Like a Pro

The internet is full of quality Python data science tutorial and course pages. You can find free and premium resources to hone your skills in the programming language or get familiar with the fundamental concepts.

Whichever resource type you choose, rest assured that learning practical Python skills will be a valuable addition to your resume. After all, data science is a constantly developing field in which expanding your knowledge base and skillset can only be a huge plus. If you’ve found a program you like in this article, don’t hesitate to jump right into it and expand your horizons.

Related posts

Sage: The ethics of AI: how to ensure your firm is fair and transparent
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 7, 2025 3 min read

Source:


By Chris Torney

Artificial intelligence (AI) and machine learning have the potential to offer significant benefits and opportunities to businesses, from greater efficiency and productivity to transformational insights into customer behaviour and business performance. But it is vital that firms take into account a number of ethical considerations when incorporating this technology into their business operations. 

The adoption of AI is still in its infancy and, in many countries, there are few clear rules governing how companies should utilise the technology. However, experts say that firms of all sizes, from small and medium-sized businesses (SMBs) to international corporations, need to ensure their implementation of AI-based solutions is as fair and transparent as possible. Failure to do so can harm relationships with customers and employees, and risks causing serious reputational damage as well as loss of trust.

What are the main ethical considerations around AI?

According to Pierluigi Casale, professor in AI at the Open Institute of Technology, the adoption of AI brings serious ethical considerations that have the potential to affect employees, customers and suppliers. “Fairness, transparency, privacy, accountability, and workforce impact are at the core of these challenges,” Casale explains. “Bias remains one of AI’s biggest risks: models trained on historical data can reinforce discrimination, and this can influence hiring, lending and decision-making.”

Part of the problem, he adds, is that many AI systems operate as ‘black boxes’, which makes their decision-making process hard to understand or interpret. “Without clear explanations, customers may struggle to trust AI-driven services; for example, employees may feel unfairly assessed when AI is used for performance reviews.”

Casale points out that data privacy is another major concern. “AI relies on vast datasets, increasing the risk of breaches or misuse,” he says. “All companies operating in Europe must comply with regulations such as GDPR and the AI Act, ensuring responsible data handling to protect customers and employees.”

A third significant ethical consideration is the potential impact of AI and automation on current workforces. Businesses may need to think about their responsibilities in terms of employees who are displaced by technology, for example by introducing training programmes that will help them make the transition into new roles.

Olivia Gambelin, an AI ethicist and the founder of advisory network Ethical Intelligence, says the AI-related ethical considerations are likely to be specific to each business and the way it plans to use the technology. “It really does depend on the context,” she explains. “You’re not going to find a magical checklist of five things to consider on Google: you actually have to do the work, to understand what you are building.”

This means business leaders need to work out how their organisation’s use of AI is going to impact the people – the customers and employees – that come into contact with it, Gambelin says. “Being an AI-enabled company means nothing if your employees are unhappy and fearful of their jobs, and being an AI-enabled service provider means nothing if it’s not actually connecting with your customers.”

Read the full article below:

Read the article
Reuters: EFG Watch: DeepSeek poses deep questions about how AI will develop
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Feb 10, 2025 4 min read

Source:

  • Reuters, Published on February 10th, 2025.

By Mike Scott

Summary

  • DeepSeek challenges assumptions about AI market and raises new ESG and investment risks
  • Efficiency gains significant – similar results being achieved with less computing power
  • Disruption fuels doubts over Big Tech’s long-term AI leadership and market valuations
  • China’s lean AI model also casts doubt on costly U.S.-backed Stargate project
  • Analysts see DeepSeek as a counter to U.S. tariffs, intensifying geopolitical tensions

February 10 – The launch by Chinese company DeepSeek, opens new tab of its R1 reasoning model last month caused chaos in U.S. markets. At the same time, it shone a spotlight on a host of new risks and challenged market assumptions about how AI will develop.

The shock has since been overshadowed by President Trump’s tariff wars, opens new tab, but DeepSeek is set to have lasting and significant implications, observers say. It is also a timely reminder of why companies and investors need to consider ESG risks, and other factors such as geopolitics, in their investment strategies.

“The DeepSeek saga is a fascinating inflection point in AI’s trajectory, raising ESG questions that extend beyond energy and market concentration,” Peter Huang, co-founder of Openware AI, said in an emailed response to questions.

DeepSeek put the cat among the pigeons by announcing that it had developed its model for around $6 million, a thousandth of the cost of some other AI models, while also using far fewer chips and much less energy.

Camden Woollven, group head of AI product marketing at IT governance and compliance group GRC International, said in an email that “smaller companies and developers who couldn’t compete before can now get in the game …. It’s like we’re seeing a democratisation of AI development. And the efficiency gains are significant as they’re achieving similar results with much less computing power, which has huge implications for both costs and environmental impact.”

The impact on AI stocks and companies associated with the sector was severe. Chipmaker Nvidia lost almost $600 billion in market capitalisation after the DeepSeek announcement on fears that demand for its chips would be lower, but there was also a 20-30% drop in some energy stocks, said Stephen Deadman, UK associate partner at consultancy Sia.

As Reuters reported, power producers were among the biggest winners in the S&P 500 last year, buoyed by expectations of ballooning demand from data centres to scale artificial intelligence technologies, yet they saw the biggest-ever one-day drops after the DeepSeek announcement.

One reason for the massive sell-off was the timing – no-one was expecting such a breakthrough, nor for it to come from China. But DeepSeek also upended the prevailing narrative of how AI would develop, and who the winners would be.

Tom Vazdar, professor of cybersecurity and AI at Open Institute of Technology (OPIT), pointed out in an email that it called into question the premise behind the Stargate Project,, opens new tab a $500 billion joint venture by OpenAI, SoftBank and Oracle to build AI infrastructure in the U.S., which was announced with great fanfare by Donald Trump just days before DeepSeek’s announcement.

“Stargate has been premised on the notion that breakthroughs in AI require massive compute and expensive, proprietary infrastructure,” Vazdar said in an email.

There are also dangers in markets being dominated by such a small group of tech companies. As Abbie Llewellyn-Waters, Investment manager at Jupiter Asset Management, pointed out in a research note, the “Magnificent Seven” tech stocks had accounted for nearly 60% of the index’s gains over the previous two years. The group of mega-caps comprised more than a third of the S&P 500’s total value in December 2024.

Read the full article below:

Read the article