Computers are already ubiquitous in the workplace, with the constantly-evolving concept of cloud computing becoming so popular that Tech Jury says 90% of businesses were in the cloud (in some form) in 2022. All of those systems need maintenance and software, requiring people who are dab-hands with keyboards at their fingertips to build networks, analyze data, and develop software.


Enter computer scientists.


By studying computer science, you open yourself up to a branching career path that could take you into almost any sort of business. But before that, you need to know the answer to a simple question – “Is BSc Computer Science a good course?”


Understanding BSc Computer Science


Think of a BSc in Computer Science as though it’s a buffet, with every topic covered being a different dish. You’ll get a taste of everything that’s on offer in the computing field, with your later educational (and career) decisions being based on the dish (i.e., the topic) that you like best. Among those topics and study areas are the following:

  • Networks and Computer Systems – Taking a more hardware-oriented focus (though software plays a part), this topic covers how to connect computers so they can interact with one another.
  • Programming – The language of computers is one you’ll need to learn how to speak if you want to develop software or websites. You’ll discover that there are a lot of languages to choose from, each with its own specific uses.
  • Artificial Intelligence (AI) – As one of the fastest-growing fields in computing (Statista anticipates growth from $100 billion in 2021 to almost $2 trillion by 2030), AI is already becoming essential in business. You’ll learn the concepts that govern AI, such as machine learning and neural networks.
  • Network Security – Every advancement in computer science brings with it malicious parties who wish to use (or subvert) that advancement to their own ends. Computer science courses teach the foundational aspects of network security, setting the stage for later specialization.

Moving beyond what you study (and the above isn’t an exhaustive list of topics), how long you spend on earning your BSc in Computer Science is another key deciding factor. Most traditional universities offer three-year courses, extending to four years if you take an internship or in-course work. The newer breed of online universities offer more flexibility, with some fast-track courses taking as little as two years, while others offer a more free-form version of study that lets you move at your own pace. With the latter, you could take several more years to complete your degree, though you’ll be able to fit your studies around work and family more easily than you would with a full-time course.


Benefits of BSc Computer Science


Assuming you’re willing to place the time (and monetary) investment into a BSc in Computer Science, there are three core benefits you’ll get from the course.


1 – Acquire In-Demand Skills and Knowledge


The basics you learn are in demand in most companies, with many offering additional training and tuition to help you build beyond the basics to become a specialist. Key areas of interest for employers include:

  • Programming – Those who can speak the language that lies behind software are always in demand, with programmers earning an average hourly rate of $33.10, according to Indeed. Salary expectations climb as you move through the ranks, with senior software engineers capable of earning in the early six figures.
  • Data Structures and Algorithms – Problem solvers are popular in any business. The knowledge of algorithms you develop when studying computer science allows you to create code (almost like a set of steps) that’s designed to solve problems. The same applies to data structures, which focus on the locations and methods used to keep data organized.
  • Computer Networks and Security – Even a small office has a network of computers, laptops, smart devices, printers, and servers that all need to communicate with one another. Computer scientists enable that communication, and keep the “conversations” machines have with each other shielded from intruding eyes.

2 – Versatility and Adaptability in the Job Market


Computer science graduates are like the chameleons of the job market. They have so much foundational knowledge in an array of subjects that they’re well-placed to be “Jacks of all trades” as general computer experts. Plus, the base they have can be built from, setting the stage for them to specialize in specific areas of computing based on their preferences.


We’ll dig into some specific roles you could take (along with their salaries) in the next section of the article.


3 – Opportunities for Further Education and Specialization


You’re already part way down the road to computer science mastery once you have your BSc, so why stop there? The opportunity exists for further education and specialization, which could open the door to further career opportunities:

  • Masters and Ph.D. Programs – A Master’s degree in computer science (or a related subject) is the next logical educational step once you have your BSc. You’ll build on what you’ve already learned, in addition to having a chance to specialize in your thesis. PhD programs aren’t immediately open (you’ll need your Master’s first) but they give you a chance to delve into subject-specific research and could set you up for a career in teaching computer science.
  • Professional Certifications – If you prefer the less formal educational route, professional certifications enable you to study at your own pace and give you handy pieces of paper you can use to prove your skills. Great examples include Cisco’s CCIE program and CompTIA’s range of certifications.

Job Prospects and Career Opportunities


Building on the previous mention about your chameleon-like ability to get jobs in multiple fields, you need to know is BSc in Computer Science good for the career-focused student. These are the roles you can get (with salary data from Indeed).


Software Development and Engineering


Rather than being the person who uses software, you can be the person who forms and puts together the building blocks that make the software tick. Software developers and engineers use their coding skills to create the next great apps, websites, computer games, and anything else that needs a computer or mobile device to run.


Average Salary – $114,470


Data Analysis and Data Science


Data, data everywhere, and not a drop to drink. That little spin on the classic “lost at sea” phrase tells you everything you need to know about how many companies feel in the Big Data world. They’re collecting tons of data but don’t know how to organize what they have or extract useful information from it. Data analysts and scientists solve that problem.


Average Salary (Data Analyst) – $74,570


Average Salary (Data Scientist) – $129,574


Cybersecurity and Network Administration


There’s a never-ending battle being waged between network administrators and hackers, with each trying to stay one step ahead of the other. Cyberattacks are on the rise, with Security Magazine pointing out that attacks around the globe increased by 38% in 2022. That means there’s always demand for cybersecurity specialists.


Average Salary – $107,063


Research and Academia


Rather than using your skills to benefit private enterprises, you could be responsible for the next generation of computer scientists. The academic path is a noble one, though not always the most profitable, and it affords you the chance to research the subjects you’re passionate about. The level you reach in academia depends on your own academic accomplishments, with a BSc usually being enough for school-level teaching. You’ll need a Master’s or Ph.D. to go into further education or complex research.


Average Salary (Computing Teacher) – $26.79 per hour


Entrepreneurship and Freelance Opportunities


Why restrict yourself to a single company when you could build your own or spread your scientific seeds wide by becoming a freelancer? More control over your destiny is the biggest benefit of this career path, though there’s a more “sink or swim” mentality. Those who hit it big with a great business idea can hit it really big, but there are plenty of failed computing businesses on the entrepreneurial road.


Average Salary – It all depends on what you do and how well you do it


Factors to Consider When Evaluating the Worth of BSc Computer Science


If you’re still asking “Is BSc Computer Science a good course?” the answer is a definite “yes.” But there are some factors to consider before you commit to several years of computing studies:

  • Personal Interests and Aptitude – Success in any area of study requires a passion for your subject and a certain amount of talent in the field. If you’re missing one (or both) of these for computer science then a BSc may not be for you.
  • Job Market Trends – It’s very possible to make a six-figure salary as a computer scientist, though specialization is often needed to hit the highest figures. Still, it’s worth keeping an eye on what’s happening with the job market to ensure you’re studying toward a future role.
  • Return on Investment – Undergraduate programs can cost anywhere between $15,000 and $85,000, so you need to feel confident that a computer science course is the right one for your future career. Otherwise, you’re left with a massive hole in your bank balance that you need to fill with student loan repayments.
  • Job Satisfaction – Working yourself into the ground is never a good thing. You need to feel confident that you’ll achieve the appropriate balance between your work, personal, and family lives.

Comparing BSc Computer Science With Other Courses


A BSc in Computer Science is far from your only choice if you’re interested in delving into computers. Here are three alternatives to consider.


BSc Information Technology


Though an IT degree covers some of the same ground as a computer science one (especially when it comes to computer networks), you’ll trade theoretical knowledge for practical application. Expect to do a lot of work with databases and basic software, with some coding along the way.


BSc Data Science


As a more specialized course, a BSc in Data Science sees you delving deeper into the math and statistics behind computational systems. You’ll learn how to analyze data and may get a better grip on emerging tech, such as machine learning, than you would with a computer science degree.


Bachelor of Engineering (Computer Science)


A bachelor of engineering takes a more hardware-centric focus than a BSc, with this course teaching more about the principles of electrical engineering and how our computing devices actually work. There are still software components, and you’ll touch on similar subjects to a BSc, but you’ll get more practical experience with this course.


Is a BSc in Computer Science Good for You?


The most important question to ask isn’t “Is BSc Computer Science a good course,” but rather is it the right course for you? Your career goals, coupled with your desire (or lack thereof) to invest your time and money into the degree, may be the main deciding factors.


As with any course, ask yourself what the ultimate benefit is to you and weigh up your options (remembering that there are several types of computing degrees) to make the right choice.

Related posts

IE University: How Corporate Purpose Drives Success in the AI Era
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Oct 17, 2024 7 min read

Source:


By Francesco Derchi

Purpose is a strategic tool for driving innovation, competitive advantage, and addressing AI challenges, writes Francesco Derchi.

Since the early 2000s, technology has dominated discussions among scholars and professionals about global development and economic trends, with the first wave of research regarding the internet’s impact on firms and society focusing on the enabling potential of technologies. The concept of “digital revolution,” as popularized by Nicholas Negroponte, became the new paradigm for broader considerations about the development of the firm’s macro environment, and how businesses could leverage it as an asset for creating competitive advantage. The following wave focused on the convergence of different technologies, such as manufacturing, and included the dynamics of coexistence between humans and machines. From the management side, the major challenges are related to defining effective digital transformation practices that could help to migrate organizations and exploit this new paradigm.

The current technological focus builds on these previous trends, particularly on artificial intelligence and more recently on the emergence of generative AI. The Age of AI is characterized by technology’s power to reshape business and society on a variety of levels. While AI’s pervasive impact is not new for firms, the mainstream adoption of ChatGPT for business purposes and the response to this ready adoption from big tech players like Microsoft, Google, and more recently Apple, shows how AI is reshaping and influencing companies’ strategic priorities.

From a research perspective, AI’s societal impact is inspiring new studies in the field of ethics. Luciano Floridi, now of Yale University, has identified several challenges for AI, characterizing them by global magnitudes like its environmental impact and has identified several challenges for AI security, including intellectual property, privacy, transparency, and accountability. In his work, Floridi underlines the importance of philosophy in defining problems and designing solutions – but it is equally important to consider how these challenges can be addressed at the firm level. What are the tools for managers?

Part of the answer may lie in the increasing and recent focus of management studies around “corporate purpose” and “brand purpose.” This trend represents an important attempt to deepen our understanding of “why to act” (purpose framing) and “how to act” (purpose formalizing and internalizing), while technology management studies address the “what to act” (purpose impacting) question. Furthermore, studies show that corporate purpose is critical for both digital native firms as well as traditional companies undergoing a digital transformation, serving as an important growth engine through purpose-driven innovation. It is therefore fair to ask: can purpose help in addressing any of the AI challenges previously mentioned?

Purpose concepts are not exclusively “cause-related” like CSR and environmental impact. Other types have emerged, such as “competence” (the function of the product) and “culture” (the intent that drives the business). This broadens the consideration of impact types that can help address specific challenges in the age of AI.

Purpose-driven organizations are not new. Take Tesla’s direction “to accelerate the world’s transition to sustainable energy” – it explicitly addresses environmental challenges while defining a business direction that requires constant innovation and leverages multiple converging technologies. The key is to have the purpose formalized and internalized within the company as a concrete drive for growth.

Due to its characteristics, the MTP plays a key role in digital transformation. This necessarily ambitious and long-term vision or goal – the Massive Transformative Purpose – requires firms, particularly those focused on exponential growth, to address emerging accelerating technologies with a purpose-first transformation logic. P&G’s Global Business Services division was able to improve market leadership and gain a competitive advantage over various start-ups and potential disruptors through its “Free up the employee, for free” MTP. This served as a north star for every employee, encouraging them to contribute ideas and best practices to overcome bulky processes and limitations.

My research on MTPs in AI-era firms explores their role in driving innovation to address specific challenges. Results show that the MTP impacts the organization across four dimensions, requiring commitment and synergy from management. Let’s consider these four dimensions by looking at Airbnb:

  1. Internal Impact: The MTP acts as the organization’s genetic code and guiding philosophy. It is key for leveraging employee motivation, with a strong relationship between purpose, organizational culture, and firm values. Airbnb’s culture of belonging highlights this, with its various purpose-shaping practices, starting with culture-fit interviews delivered during the recruitment process.
  2. Brand and Market Influence: The MTP contributes directly to building a strong brand and influencing the market. It allows firms to extend beyond functional and symbolic benefits to make the impact of the company on society visible. This involves addressing market demand coherently and consistently. Airbnb’s “Bélo” symbol visually represents this concept of belonging while their MTP features in campaigns like “Wall and Chain: A Story of Breaking Down Walls.”
  3. Competitive Advantage and Growth: The MTP drives innovation and can lead to superior stock market performance. In digital firms, it’s key in the creation of ecosystems that aggregate leveraged assets and third parties for value creation. The company’s “belong anywhere transformation journey” is a strategic initiative that formalized and interiorized the MTP through various touchpoints for all the different ecosystem members. As Leigh Gallagher details in her 2016 Fortune feature about the company, “When travellers leave their homes, they feel alone. They reach their Airbnb, and they feel accepted and taken care of by their host. They then feel safe to be the same kind of person they are when they’re at home.”
  4. Core Organization Identity: The MTP is considered part of the core dimension of the organization. More than a goal or business strategy, it is a strategic issue that generates a sense of direction and purpose that affects every part of the organization: internal, external, personality, and expression. This dimension also involves the role of the founder(s) and their personality in shaping the business. At Airbnb, the MTP is often used as a shortcut to explain the firm’s mission and vision. The founders’ approach is pragmatic, and instead of debating differences, time should be spent on execution. At the same time, the personalities of the three founders, Chesky, Gebbia, and Blecharcyzk, are the identity of the firm. They were the first hosts for the platform. Their credibility is key for making Airbnb a trustworthy and coherent proposal in a crowded market.

Executives and leaders of business in the current AI era should embrace three key principles. Be true: Purpose is an essential strategic tool that enables firms to identify and connect with their original selves, decoding their reason for being and embedding it into their identity. Be ambitious: The MTP allows for global impact, confronting major challenges by synthesizing business values and guiding innovation paths to address AI-related issues. Be generous: Purpose allows firms to explicitly address environmental and social issues, taking action on values-based challenges such as transparency, respect for intellectual property, and accountability. By following these principles, organizations and their leaders can maintain their direction and continue to advance in the AI era.

Read the full article below:

Read the article
Zorina Alliata Of Open Institute of Technology On Five Things You Need To Create A Highly Successful Career In The AI Industry
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Sep 19, 2024 13 min read

Source:


Gaining hands-on experience through projects, internships, and collaborations is vital for understanding how to apply AI in various industries and domains. Use Kaggle or get a free cloud account and start experimenting. You will have projects to discuss at your next interviews.

By David Leichner, CMO at Cybellum

14 min read

Artificial Intelligence is now the leading edge of technology, driving unprecedented advancements across sectors. From healthcare to finance, education to environment, the AI industry is witnessing a skyrocketing demand for professionals. However, the path to creating a successful career in AI is multifaceted and constantly evolving. What does it take and what does one need in order to create a highly successful career in AI?

In this interview series, we are talking to successful AI professionals, AI founders, AI CEOs, educators in the field, AI researchers, HR managers in tech companies, and anyone who holds authority in the realm of Artificial Intelligence to inspire and guide those who are eager to embark on this exciting career path.

As part of this series, we had the pleasure of interviewing Zorina Alliata.

Zorina Alliata is an expert in AI, with over 20 years of experience in tech, and over 10 years in AI itself. As an educator, Zorina Alliata is passionate about learning, access to education and about creating the career you want. She implores us to learn more about ethics in AI, and not to fear AI, but to embrace it.

Thank you so much for joining us in this interview series! Before we dive in, our readers would like to learn a bit about your origin story. Can you share with us a bit about your childhood and how you grew up?

I was born in Romania, and grew up during communism, a very dark period in our history. I was a curious child and my parents, both teachers, encouraged me to learn new things all the time. Unfortunately, in communism, there was not a lot to do for a kid who wanted to learn: there was no TV, very few books and only ones that were approved by the state, and generally very few activities outside of school. Being an “intellectual” was a bad thing in the eyes of the government. They preferred people who did not read or think too much. I found great relief in writing, I have been writing stories and poetry since I was about ten years old. I was published with my first poem at 16 years old, in a national literature magazine.

Can you share with us the ‘backstory’ of how you decided to pursue a career path in AI?

I studied Computer Science at university. By then, communism had fallen and we actually had received brand new PCs at the university, and learned several programming languages. The last year, the fifth year of study, was equivalent with a Master’s degree, and was spent preparing your thesis. That’s when I learned about neural networks. We had a tiny, 5-node neural network and we spent the year trying to teach it to recognize the written letter “A”.

We had only a few computers in the lab running Windows NT, so really the technology was not there for such an ambitious project. We did not achieve a lot that year, but I was fascinated by the idea of a neural network learning by itself, without any programming. When I graduated, there were no jobs in AI at all, it was what we now call “the AI winter”. So I went and worked as a programmer, then moved into management and project management. You can imagine my happiness when, about ten years ago, AI came back to life in the form of Machine Learning (ML).

I immediately went and took every class possible to learn about it. I spent that Christmas holiday coding. The paradigm had changed from when I was in college, when we were trying to replicate the entire human brain. ML was focused on solving one specific problem, optimizing one specific output, and that’s where businesses everywhere saw a benefit. I then joined a Data Science team at GEICO, moved to Capital One as a Delivery lead for their Center for Machine Learning, and then went to Amazon in their AI/ML team.

Can you tell our readers about the most interesting projects you are working on now?

While I can’t discuss work projects due to confidentiality, there are some things I can mention! In the last five years, I worked with global companies to establish an AI strategy and to introduce AI and ML in their organizations. Some of my customers included large farming associations, who used ML to predict when to plant their crops for optimal results; water management companies who used ML for predictive maintenance to maintain their underground pipes; construction companies that used AI for visual inspections of their buildings, and to identify any possible defects and hospitals who used Digital Twins technology to improve patient outcomes and health. It is amazing to see how much AI and ML are already part of our everyday lives, and to recognize some of it in the mundane around us.

None of us are able to achieve success without some help along the way. Is there a particular person who you are grateful for who helped get you to where you are? Can you share a story about that?

When you are young, there are so many people who step up and help you along the way. I have had great luck with several professors who have encouraged me in school, and an uncle who worked in computers who would take me to his office and let me play around with his machines. I now try to give back and mentor several young people, especially women who are trying to get into the field. I volunteer with AnitaB and Zonta, as well as taking on mentees where I work.

As with any career path, the AI industry comes with its own set of challenges. Could you elaborate on some of the significant challenges you faced in your AI career and how you managed to overcome them?

I think one major challenge in AI is the speed of change. I remember after spending my Christmas holiday learning and coding in R, when I joined the Data Science team at GEICO, I realized the world had moved on and everyone was now coding in Python. So, I had to learn Python very fast, in order to understand what was going on.

It’s the same with research — I try to work on one subject, and four new papers are published every week that move the goal posts. It is very challenging to keep up, but you just have to adapt to continuously learn and let go of what becomes obsolete.

Ok, let’s now move to the main part of our interview about AI. What are the 3 things that most excite you about the AI industry now? Why?

1. Creativity

Generative AI brought us the ability to create amazing images based on simple text descriptions. Entire videos are now possible, and soon, maybe entire movies. I have been working in AI for several years and I never thought creative jobs will be the first to be achieved by AI. I am amazed at the capacity of an algorithms to create images, and to observe the artificial creativity we now see for the first time.

2. Abstraction

I think with the success and immediate mainstream adoption of Generative AI, we saw the great appetite out there for automation and abstraction. No one wants to do boring work and summarizing documents; no one wants to read long websites, they just want the gist of it. If I drive a car, I don’t need to know how the engine works and every equation that the engineers used to build it — I just want my car to drive. The same level of abstraction is now expected in AI. There is a lot of opportunity here in creating these abstractions for the future.

3. Opportunity

I like that we are in the beginning of AI, so there is a lot of opportunity to jump in. Most people who are passionate about it can learn all about AI fully online, in places like Open Institute of Technology. Or they can get experience working on small projects, and then they can apply for jobs. It is great because it gives people access to good jobs and stability in the future.

What are the 3 things that concern you about the AI industry? Why? What should be done to address and alleviate those concerns?

1. Fairness

The large companies that build LLMs spend a lot of energy and money into making them fair. But it is not easy. Us, as humans, are often not fair ourselves. We even have problems agreeing what fairness even means. So, how can we teach the machines to be fair? I think the responsibility stays with us. We can’t simply say “AI did this bad thing.”

2. Regulation

There are some regulations popping up but most are not coordinated or discussed widely. There is controversy, such as regarding the new California bill SB1047, where scientists take different sides of the debate. We need to find better ways to regulate the use and creation of AI, working together as a society, not just in small groups of politicians.

3. Awareness

I wish everyone understood the basics of AI. There is denial, fear, hatred that is created by doomsday misinformation. I wish AI was taught from a young age, through appropriate means, so everyone gets the fundamental principles and understands how to use this great tool in their lives.

For a young person who would like to eventually make a career in AI, which skills and subjects do they need to learn?

I think maybe the right question is: what are you passionate about? Do that, and see how you can use AI to make your job better and more exciting! I think AI will work alongside people in most jobs, as it develops and matures.

But for those who are looking to work in AI, they can choose from a variety of roles as well. We have technical roles like data scientist or machine learning engineer, which require very specialized knowledge and degrees. They learn computing, software engineering, programming, data analysis, data engineering. There are also business roles, for people who understand the technology well but are not writing code. Instead, they define strategies, design solutions for companies, or write implementation plans for AI products and services. There is also a robust AI research domain, where lots of scientists are measuring and analyzing new technology developments.

With Generative AI, new roles appeared, such as Prompt Engineer. We can now talk with the machines in natural language, so speaking good English is all that’s required to find the right conversation.

With these many possible roles, I think if you work in AI, some basic subjects where you can start are:

  1. Analytics — understand data and how it is stored and governed, and how we get insights from it.
  2. Logic — understand both mathematical and philosophical logic.
  3. Fundamentals of AI — read about the history and philosophy of AI, models of thinking, and major developments.

As you know, there are not that many women in the AI industry. Can you advise what is needed to engage more women in the AI industry?

Engaging more women in the AI industry is absolutely crucial if you want to build any successful AI products. In my twenty years career, I have seen changes in the tech industry to address this gender discrepancy. For example, we do well in school with STEM programs and similar efforts that encourage girls to code. We also created mentorship organizations such as AnitaB.org who allow women to connect and collaborate. One place where I think we still lag behind is in the workplace. When I came to the US in my twenties, I was the only woman programmer in my team. Now, I see more women at work, but still not enough. We say we create inclusive work environments, but we still have a long way to go to encourage more women to stay in tech. Policies that support flexible hours and parental leave are necessary, and other adjustments that account for the different lives that women have compared to men. Bias training and challenging stereotypes are also necessary, and many times these are implemented shoddily in organizations.

Ethical AI development is a pressing concern in the industry. How do you approach the ethical implications of AI, and what steps do you believe individuals and organizations should take to ensure responsible and fair AI practices?

Machine Learning and AI learn from data. Unfortunately, lot of our historical data shows strong biases. For example, for a long time, it was perfectly legal to only offer mortgages to white people. The data shows that. If we use this data to train a new model to enhance the mortgage application process, then the model will learn that mortgages should only be offered to white men. That is a bias that we had in the past, but we do not want to learn and amplify in the future.

Generative AI has introduced a new set of fresh risks, the most famous being the “hallucinations.” Generative AI will create new content based on chunks of text it finds in its training data, without an understanding of what the content means. It could repeat something it learned from one Reddit user ten years ago, that could be factually incorrect. Is that piece of information unbiased and fair?

There are many ways we fight for fairness in AI. There are technical tools we can use to offer interpretability and explainability of the actual models used. There are business constraints we can create, such as guardrails or knowledge bases, where we can lead the AI towards ethical answers. We also advise anyone who build AI to use a diverse team of builders. If you look around the table and you see the same type of guys who went to the schools, you will get exactly one original idea from them. If you add different genders, different ages, different tenures, different backgrounds, then you will get ten innovative ideas for your product, and you will have addressed biases you’ve never even thought of.

Read the full article below:

Read the article