Did you know you’re participating in a distributed computing system simply by reading this article? That’s right, the massive network that is the internet is an example of distributed computing, as is every application that uses the world wide web.

Distributed computing involves getting multiple computing units to work together to solve a single problem or perform a single task. Distributing the workload across multiple interconnected units leads to the formation of a super-computer that has the resources to deal with virtually any challenge.

Without this approach, large-scale operations involving computers would be all but impossible. Sure, this has significant implications for scientific research and big data processing. But it also hits close to home for an average internet user. No distributed computing means no massively multiplayer online games, e-commerce websites, or social media networks.

With all this in mind, let’s look at this valuable system in more detail and discuss its advantages, disadvantages, and applications.

Basics of Distributed Computing

Distributed computing aims to make an entire computer network operate as a single unit. Read on to find out how this is possible.

Components of a Distributed System

A distributed system has three primary components: nodes, communication channels, and middleware.

Nodes

The entire premise of distributed computing is breaking down one giant task into several smaller subtasks. And who deals with these subtasks? The answer is nodes. Each node (independent computing unit within a network) gets a subtask.

Communication Channels

For nodes to work together, they must be able to communicate. That’s where communication channels come into play.

Middleware

Middleware is the middleman between the underlying infrastructure of a distributed computing system and its applications. Both sides benefit from it, as it facilitates their communication and coordination.

Types of Distributed Systems

Coordinating the essential components of a distributed computing system in different ways results in different distributed system types.

Client-Server Systems

A client-server system consists of two endpoints: clients and servers. Clients are there to make requests. Armed with all the necessary data, servers are the ones that respond to these requests.

The internet, as a whole, is a client-server system. If you’d like a more specific example, think of how streaming platforms (Netflix, Disney+, Max) operate.

Peer-to-Peer Systems

Peer-to-peer systems take a more democratic approach than their client-server counterparts: they allocate equal responsibilities to each unit in the network. So, no unit holds all the power and each unit can act as a server or a client.

Content sharing through clients like BitTorrent, file streaming through apps like Popcorn Time, and blockchain networks like Bitcoin are some well-known examples of peer-to-peer systems.

Grid Computing

Coordinate a grid of geographically distributed resources (computers, networks, servers, etc.) that work together to complete a common task, and you get grid computing.

Whether belonging to multiple organizations or far away from each other, nothing will stop these resources from acting as a uniform computing system.

Cloud Computing

In cloud computing, centralized data centers store data that organizations can access on demand. These centers might be centralized, but each has a different function. That’s where the distributed system in cloud computing comes into play.

Thanks to the role of distributed computing in cloud computing, there’s no limit to the number of resources that can be shared and accessed.

Key Concepts in Distributed Computing

For a distributed computing system to operate efficiently, it must have specific qualities.

Scalability

If workload growth is an option, scalability is a necessity. Amp up the demand in a distributed computing system, and it responds by adding more nodes and consuming more resources.

Fault Tolerance

In a distributed computing system, nodes must rely on each other to complete the task at hand. But what happens if there’s a faulty node? Will the entire system crash? Fortunately, it won’t, and it has fault tolerance to thank.

Instead of crashing, a distributed computing system responds to a faulty node by switching to its working copy and continuing to operate as if nothing happened.

Consistency

A distributed computing system will go through many ups and downs. But through them all, it must uphold consistency across all nodes. Without consistency, a unified and up-to-date system is simply not possible.

Concurrency

Concurrency refers to the ability of a distributed computing system to execute numerous processes simultaneously.

Parallel computing and distributed computing have this quality in common, leading many to mix up these two models. But there’s a key difference between parallel and distributed computing in this regard. With the former, multiple processors or cores of a single computing unit perform the simultaneous processes. As for distributed computing, it relies on interconnected nodes that only act as a single unit for the same task.

Despite their differences, both parallel and distributed computing systems have a common enemy to concurrency: deadlocks (blocking of two or more processes). When a deadlock occurs, concurrency goes out of the window.

Advantages of Distributed Computing

There are numerous reasons why using distributed computing is a good idea:

  • Improved performance. Access to multiple resources means performing at peak capacity, regardless of the workload.
  • Resource sharing. Sharing resources between several workstations is your one-way ticket to efficiently completing computation tasks.
  • Increased reliability and availability. Unlike single-system computing, distributed computing has no single point of failure. This means welcoming reliability, consistency, and availability and bidding farewell to hardware vulnerabilities and software failures.
  • Scalability and flexibility. When it comes to distributed computing, there’s no such thing as too much workload. The system will simply add new nodes and carry on. No centralized system can match this level of scalability and flexibility.
  • Cost-effectiveness. Delegating a task to several lower-end computing units is much more cost-effective than purchasing a single high-end unit.

Challenges in Distributed Computing

Although this offers numerous advantages, it’s not always smooth sailing with distributed systems. All involved parties are still trying to address the following challenges:

  • Network latency and bandwidth limitations. Not all distributed systems can handle a massive amount of data on time. Even the slightest delay (latency) can affect the system’s overall performance. The same goes for bandwidth limitations (the amount of data that can be transmitted simultaneously).
  • Security and privacy concerns. While sharing resources has numerous benefits, it also has a significant flaw: data security. If a system as open as a distributed computing system doesn’t prioritize security and privacy, it will be plagued by data breaches and similar cybersecurity threats.
  • Data consistency and synchronization. A distributed computing system derives all its power from its numerous nodes. But coordinating all these nodes (various hardware, software, and network configurations) is no easy task. That’s why issues with data consistency and synchronization (concurrency) come as no surprise.
  • System complexity and management. The bigger the distributed computing system, the more challenging it gets to manage it efficiently. It calls for more knowledge, skills, and money.
  • Interoperability and standardization. Due to the heterogeneous nature of a distributed computing system, maintaining interoperability and standardization between the nodes is challenging, to say the least.

Applications of Distributed Computing

Nowadays, distributed computing is everywhere. Take a look at some of its most common applications, and you’ll know exactly what we mean:

  • Scientific research and simulations. Distributed computing systems model and simulate complex scientific data in fields like healthcare and life sciences. (For example, accelerating patient diagnosis with the help of a large volume of complex images (CT scans, X-rays, and MRIs).
  • Big data processing and analytics. Big data sets call for ample storage, memory, and computational power. And that’s precisely what distributed computing brings to the table.
  • Content delivery networks. Delivering content on a global scale (social media, websites, e-commerce stores, etc.) is only possible with distributed computing.
  • Online gaming and virtual environments. Are you fond of massively multiplayer online games (MMOs) and virtual reality (VR) avatars? Well, you have distributed computing to thank for them.
  • Internet of Things (IoT) and smart devices. At its very core, IoT is a distributed system. It relies on a mixture of physical access points and internet services to transform any devices into smart devices that can communicate with each other.

Future Trends in Distributed Computing

Given the flexibility and usability of distributed computing, data scientists and programmers are constantly trying to advance this revolutionary technology. Check out some of the most promising trends in distributed computing:

  • Edge computing and fog computing – Overcoming latency challenges
  • Serverless computing and Function-as-a-Service (FaaS) – Providing only the necessary amount of service on demand
  • Blockchain – Connecting computing resources of cryptocurrency miners worldwide
  • Artificial intelligence and machine learning – Improving the speed and accuracy in training models and processing data
  • Quantum computing and distributed systems – Scaling up quantum computers

Distributed Computing Is Paving the Way Forward

The ability to scale up computational processes opens up a world of possibilities for data scientists, programmers, and entrepreneurs worldwide. That’s why current challenges and obstacles to distributed computing aren’t particularly worrisome. With a little more research, the trustworthiness of distributed systems won’t be questioned anymore.

Related posts

OPIT Is Turning 2! What Have We Achieved in the Last 2 Years?
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 7, 2025 6 min read

The Open Institute of Technology (OPIT) is turning two! It has been both a long journey and a whirlwind trip to reach this milestone. But it is also the perfect time to stop and reflect on what we have achieved over the last two years, as well as assess our hopes for the future. Join us as we map our journey over the last two years and look forward to future plans.

July 2023: Launching OPIT

OPIT officially launched as an EU-accredited online higher education institution in July 2023, and offered two core programs: a BSc in Modern Computer Science and an MSc in Applied Data Science and AI. Its first class matriculated in September of that year.

The launch of OPIT was several years in the making. Founder Riccardo Ocleppo was planning OPIT ever since he launched his first company, Docsity, in 2010, an online platform for students to share access to educational resources. As part of working on that project, Ocleppo had the chance to talk to thousands of students and professors and discovered just how big a gap there is between what is taught in universities today and job market demands. Ocleppo felt that this gap was especially wide in the field of computer science, and OPIT was his concept to fill that gap.

The vision was to provide university-level teaching that was accessible around the world through digital learning technologies and that was also affordable. Ocleppo’s vision also involved international professors and building strong relationships with global companies to ensure a truly international and fit-for-purpose learning experience.

One of the most important parts of launching OPIT was the recruitment of the faculty of professors, which Ocleppo was personally involved in. The idea was to build a roster of expert teachers and professionals who were leaders in the field and urge them to unite the teaching fundamentals with real-world applications and experience. The process involved screening more than 5,000 CVs, interviewing over 200 candidates, and recruiting 25 professors to form the core of OPIT’s faculty.

September 2023: The Inaugural Cohort

When OPIT officially launched, its first cohort included 100 students from 38 different countries. Divided between the BSc and MSc courses, students were also allowed to participate in one of two different tracks. Some chose the standard track to accommodate their existing work commitments, while others chose to fast-track to complete their studies sooner.

OPIT was pleased with its success in making the courses international and accessible, with notable representation from Africa. In the first cohort, 40% of MSc students were also from non-STEM fields, showing OPIT’s success at engaging professionals looking to develop skills for the modern workplace.

July 2024: A Growing Curriculum

Building on this initial success, in 2024, OPIT expanded its academic offering to include a second BSc program in Digital Business, and three new MSc programs in Digital Business & Innovation, Responsible Artificial Intelligence, and Enterprise Cybersecurity. These were all offered in addition to the original two programs.

The new course offerings led to total student numbers growing to over 300, hailing from 78 different countries. This also led to an expansion of the faculty, with professionals recruited from major business leaders such as Symantec, Microsoft, PayPal, McKinsey, MIT, Morgan Stanley, Amazon, and U.S. Naval Research. This focus on professional experience and real-world applications is ideal for OPIT as 80% of the student body are active working professionals.

January 2025: First Graduating Class

OPIT held its first-ever graduation ceremony in Valletta, Malta, on March 8, 2025. The ceremony was a hybrid event, with students attending both in person and virtually. The first graduating class consisted of 40 students who received an MSc in Applied Data Science and AI.

OPIT’s MSc programs include a capstone project that sees students apply their learning to real-world challenges. Projects included the use of large language models for the creation of chatbots in the ed-tech field, the digitalization of customer support processes in the paper and non-woven industry, personal data protection systems, AI applications for environmental sustainability, and predictive models for disaster prevention linked to climate change. Since many OPIT students realized their capstone projects within their organizations, OPIT also saw itself successfully facilitating digital innovation in the field.

July 2025: New Learning Environments

The next step for OPIT is not just to teach others how to leverage AI to work smarter, but to start applying AI solutions in our own business environment. To this end, OPIT unveiled its OPIT AI Copilot at the Microsoft AI Agents and the Future of Higher Education event in Milan in June 2025.

The OPIT AI Copilot is a specialist AI Agent designed to enhance learning in OPIT’s fully digital environment. OPIT AI Copilot acts as a personal tutor and study companion, and but rather than being trained on the World Wide Web, it is specifically trained on OPIT’s educational archive of around 3,500 hours of lectures and 3,000 proprietary documents.

The OPIT AI Copilot then provides real-time, personalized guidance that adapts to where the student is in the course and the progress they have shown in grasping the material. As well as pulling from existing materials, the OPIT AI Copilot can generate content to deepen learning, such as code samples and practical exams. It can also answer questions posed by the students with answers grounded in the official course material. The tool is available 24/7, and also has an intelligent examination mode, which prevents cheating.

In this way, OPIT AI Copilot enriches the OPIT learning environment by providing students with 24/7 personalized support for their learning journey, ideal for busy professionals balancing work and study. It is a step towards facing the challenge of “one-size-fits-all” education approaches that have plagued learning institutions for millennia.

September 2025: A New Cohort

On the heels of the OPIT AI Copilot launch, OPIT is excited about recruiting its next round of students, with applications open until September 2025. If you are interested in joining OPIT, you can learn more about its courses here.

Read the article
Authority Magazine: Paola Tirelli of RWS Group on the Future of Artificial Intelligence
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 4, 2025 9 min read

Source:

By Kate Mowbray, 7 min read


“To engage more women in the AI industry, I believe we need to start by highlighting the diversity of roles available. Not all of them are purely technical. AI needs linguists, designers, ethicists, project managers, and many other profiles. Showing that there’s space for different kinds of expertise can make the field feel more accessible. We also need more visible role models: women who are leading, innovating, and mentoring in AI.”

As part of our series about the future of Artificial Intelligence, I had the pleasure of interviewing Paola Tirelli, linguistic AI specialist with RWS Group. Paola is also an MSc in Applied Data Science and AI graduate of OPIT — Open Institute of Technology, a global online educational institution.

With over a decade in translation and project management, Paola is passionate about integrating technology with language services. She considers bridging language barriers and leading teams to success her strength.

Thank you so much for joining us in this interview series! Can you share with us the ‘backstory” of how you decided to pursue this career path in AI?

Mybackground is in linguistics and localization, and I’ve spent years working with translation, quality assurance, and automation tools. I’ve always been fascinated by the intersection of language and technology. The turning point came when I realized I had reached a plateau in my role and felt a strong urge to grow, contribute more meaningfully, and understand the changes reshaping the industry.

That curiosity naturally led me to AI, a space where my linguistic expertise could meet innovation. I began to see how powerful AI could be in solving specific challenges in localization, especially around quality and efficiency. This inspired me to pursue a Master’s in Applied Data Science and AI at OPIT, to deepen my skills and explore how to bridge my domain knowledge with the new tools AI offers.

What lessons can others learn from your story?

It’s never too late to reinvent yourself. You don’t need to have a technical background from the start to enter the AI field. With strong motivation, curiosity, and a willingness to learn, you can go very far.

Embracing your own expertise, whatever it may be, can actually become your greatest asset. AI isn’t just about code and algorithms; it’s about solving real-world problems, and that requires diverse perspectives. If you’re driven by purpose and open to growth, you can not only adapt to change, but you can help shape it.

Can you tell our readers about the most interesting projects you are working on now?

What I find most exciting about my current work is the opportunity to experiment and explore where AI can truly be a game changer in the localization space. I’m particularly interested in projects that would have been unthinkable just a few years ago, initiatives involving massive amounts of data or complex workflows that no client would have considered feasible due to time, cost, or resource constraints. Thanks to AI, we can now approach these challenges in entirely new ways, unlocking value and enabling solutions that were previously out of reach, such as automated terminology extraction or adapting content across different language variants.

None of us are able to achieve success without some help along the way. Is there a particular person who you are grateful towards who helped get you to where you are? Can you share a story about that?

I’m especially grateful to the person who would later become my manager, Marina Pantcheva. At the time, I had already started my Master’s at OPIT and was looking for the right direction to apply what I was learning. I knew I wanted to stay within my company, but I wasn’t sure where to focus.

Then I attended a talk she gave on AI. It was clear, engaging, and incredibly inspiring. It felt like a calling. I knew I wanted to work with her and be part of her team. When I eventually joined the AI team, she believed in my potential from the start. She gave me the space to ask questions, explore ideas, and gradually take on more responsibility. That trust and support made all the difference. It helped me grow into this new field with confidence and purpose.

What are the 5 things that most excite you about the AI industry? Why?

· We’re writing the future — AI is still in its early stages, and we don’t yet know the limits of what it can do. Being part of this journey feels like contributing to something truly transformative.

· Unthinkable opportunities are now possible — Tasks that once required enormous manual effort or were simply out of reach due to scale or complexity are now achievable. AI opens doors to projects that were previously unimaginable.

· Access to knowledge like never before — AI enhances how we interact with information, making it faster and more intuitive to explore, learn, and apply knowledge across domains.

· Cross-disciplinarity — AI touches every field, so it’s full of opportunities for people from different backgrounds.

· Problem-solving at scale — AI can help automate tedious tasks and improve decision-making in complex workflows.

What are the 5 things that concern you about the AI industry? Why?

· AI systems are not 100% reliable, and their outputs can sometimes be inaccurate or misleading. This raises questions about how much we can (or should) trust them, especially in high-stakes contexts.

· As we integrate AI into more aspects of our work and lives, there’s a risk of becoming overly reliant on it, potentially at the expense of human judgment, creativity, and critical thinking.

· If we delegate too much to machines, we may gradually lose some of our own cognitive abilities, like problem-solving, memory, or even language skills, simply because we’re not exercising them as much.

· Without clear communication and reskilling strategies, AI can be perceived as a threat rather than a tool. This fear can create resistance and anxiety, especially in industries undergoing rapid transformation.

· From bias in algorithms to the misuse of generative tools, the ethical challenges are real. We need strong frameworks to ensure AI is developed and used responsibly, with transparency and accountability.

As you know, there is an ongoing debate between prominent scientists, (personified as a debate between Elon Musk and Mark Zuckerberg,) about whether advanced AI poses an existential danger to humanity. What is your position about this?

I think it’s important to separate science fiction from science. While I don’t believe current AI poses an existential threat, I do believe that we need to be very intentional about how we develop and use it. The real risks today are more about misuse, bias, and lack of transparency than about a doomsday scenario.

What can be done to prevent such concerns from materializing? And what can be done to assure the public that there is nothing to be concerned about?

Transparency and education are key. We need to involve more people in the conversation; not just engineers, but also linguists, ethicists, teachers, and everyday users. Clear communication about what AI can and cannot do would help build trust. Regulation also has to catch up with the speed of innovation, without stifling it.

As you know, there are not many women in the AI industry. Can you advise what is needed to engage more women into the AI industry?

My perception is slightly different, because I come from the localization industry, where there’s a strong presence of women. So, when I transitioned into AI, I brought with me a sense of belonging and confidence that not everyone may feel when entering a more male-dominated space.

To engage more women in the AI industry, I believe we need to start by highlighting the diversity of roles available. Not all of them are purely technical. AI needs linguists, designers, ethicists, project managers, and many other profiles. Showing that there’s space for different kinds of expertise can make the field feel more accessible. We also need more visible role models: women who are leading, innovating, and mentoring in AI.

Representation matters. When you see someone like you doing something you thought was out of reach, it becomes easier to imagine yourself there too.

What is your favorite “Life Lesson Quote”? Can you share a story of how that had relevance to your own life?

It’s never too late to be what you might have been,” by George Eliot.

This quote really resonated with me when I decided to shift my career path toward AI. Starting a Master’s in Applied Data Science and AI while working full-time wasn’t easy, but that quote gave me the courage to step into a field that initially felt far from my comfort zone, and to trust that my unique background could actually be a strength, not a limitation.

You are a person of great influence. If you could start a movement that would bring the most amount of good to the most amount of people, what would that be? You never know what your idea can trigger.

If I could start a movement, it would focus on democratizing access to AI education and tools, especially for people from non-technical backgrounds. I truly believe that AI should not be limited to engineers or data scientists. It has the potential to empower professionals from all fields, from linguists to educators to healthcare workers. I’d love to see a world where people feel confident using AI not just as a tool, but as a partner in creativity, problem-solving, and innovation, regardless of their background, gender, or location.

How can our readers further follow your work online?

I usually share updates on LinkedIn: https://www.linkedin.com/in/paola-tirelli-9abbb32a9/

This was very inspiring. Thank you so much for joining us!

Read the full article below:

Read the article