Did you know you’re participating in a distributed computing system simply by reading this article? That’s right, the massive network that is the internet is an example of distributed computing, as is every application that uses the world wide web.

Distributed computing involves getting multiple computing units to work together to solve a single problem or perform a single task. Distributing the workload across multiple interconnected units leads to the formation of a super-computer that has the resources to deal with virtually any challenge.

Without this approach, large-scale operations involving computers would be all but impossible. Sure, this has significant implications for scientific research and big data processing. But it also hits close to home for an average internet user. No distributed computing means no massively multiplayer online games, e-commerce websites, or social media networks.

With all this in mind, let’s look at this valuable system in more detail and discuss its advantages, disadvantages, and applications.

Basics of Distributed Computing

Distributed computing aims to make an entire computer network operate as a single unit. Read on to find out how this is possible.

Components of a Distributed System

A distributed system has three primary components: nodes, communication channels, and middleware.

Nodes

The entire premise of distributed computing is breaking down one giant task into several smaller subtasks. And who deals with these subtasks? The answer is nodes. Each node (independent computing unit within a network) gets a subtask.

Communication Channels

For nodes to work together, they must be able to communicate. That’s where communication channels come into play.

Middleware

Middleware is the middleman between the underlying infrastructure of a distributed computing system and its applications. Both sides benefit from it, as it facilitates their communication and coordination.

Types of Distributed Systems

Coordinating the essential components of a distributed computing system in different ways results in different distributed system types.

Client-Server Systems

A client-server system consists of two endpoints: clients and servers. Clients are there to make requests. Armed with all the necessary data, servers are the ones that respond to these requests.

The internet, as a whole, is a client-server system. If you’d like a more specific example, think of how streaming platforms (Netflix, Disney+, Max) operate.

Peer-to-Peer Systems

Peer-to-peer systems take a more democratic approach than their client-server counterparts: they allocate equal responsibilities to each unit in the network. So, no unit holds all the power and each unit can act as a server or a client.

Content sharing through clients like BitTorrent, file streaming through apps like Popcorn Time, and blockchain networks like Bitcoin are some well-known examples of peer-to-peer systems.

Grid Computing

Coordinate a grid of geographically distributed resources (computers, networks, servers, etc.) that work together to complete a common task, and you get grid computing.

Whether belonging to multiple organizations or far away from each other, nothing will stop these resources from acting as a uniform computing system.

Cloud Computing

In cloud computing, centralized data centers store data that organizations can access on demand. These centers might be centralized, but each has a different function. That’s where the distributed system in cloud computing comes into play.

Thanks to the role of distributed computing in cloud computing, there’s no limit to the number of resources that can be shared and accessed.

Key Concepts in Distributed Computing

For a distributed computing system to operate efficiently, it must have specific qualities.

Scalability

If workload growth is an option, scalability is a necessity. Amp up the demand in a distributed computing system, and it responds by adding more nodes and consuming more resources.

Fault Tolerance

In a distributed computing system, nodes must rely on each other to complete the task at hand. But what happens if there’s a faulty node? Will the entire system crash? Fortunately, it won’t, and it has fault tolerance to thank.

Instead of crashing, a distributed computing system responds to a faulty node by switching to its working copy and continuing to operate as if nothing happened.

Consistency

A distributed computing system will go through many ups and downs. But through them all, it must uphold consistency across all nodes. Without consistency, a unified and up-to-date system is simply not possible.

Concurrency

Concurrency refers to the ability of a distributed computing system to execute numerous processes simultaneously.

Parallel computing and distributed computing have this quality in common, leading many to mix up these two models. But there’s a key difference between parallel and distributed computing in this regard. With the former, multiple processors or cores of a single computing unit perform the simultaneous processes. As for distributed computing, it relies on interconnected nodes that only act as a single unit for the same task.

Despite their differences, both parallel and distributed computing systems have a common enemy to concurrency: deadlocks (blocking of two or more processes). When a deadlock occurs, concurrency goes out of the window.

Advantages of Distributed Computing

There are numerous reasons why using distributed computing is a good idea:

  • Improved performance. Access to multiple resources means performing at peak capacity, regardless of the workload.
  • Resource sharing. Sharing resources between several workstations is your one-way ticket to efficiently completing computation tasks.
  • Increased reliability and availability. Unlike single-system computing, distributed computing has no single point of failure. This means welcoming reliability, consistency, and availability and bidding farewell to hardware vulnerabilities and software failures.
  • Scalability and flexibility. When it comes to distributed computing, there’s no such thing as too much workload. The system will simply add new nodes and carry on. No centralized system can match this level of scalability and flexibility.
  • Cost-effectiveness. Delegating a task to several lower-end computing units is much more cost-effective than purchasing a single high-end unit.

Challenges in Distributed Computing

Although this offers numerous advantages, it’s not always smooth sailing with distributed systems. All involved parties are still trying to address the following challenges:

  • Network latency and bandwidth limitations. Not all distributed systems can handle a massive amount of data on time. Even the slightest delay (latency) can affect the system’s overall performance. The same goes for bandwidth limitations (the amount of data that can be transmitted simultaneously).
  • Security and privacy concerns. While sharing resources has numerous benefits, it also has a significant flaw: data security. If a system as open as a distributed computing system doesn’t prioritize security and privacy, it will be plagued by data breaches and similar cybersecurity threats.
  • Data consistency and synchronization. A distributed computing system derives all its power from its numerous nodes. But coordinating all these nodes (various hardware, software, and network configurations) is no easy task. That’s why issues with data consistency and synchronization (concurrency) come as no surprise.
  • System complexity and management. The bigger the distributed computing system, the more challenging it gets to manage it efficiently. It calls for more knowledge, skills, and money.
  • Interoperability and standardization. Due to the heterogeneous nature of a distributed computing system, maintaining interoperability and standardization between the nodes is challenging, to say the least.

Applications of Distributed Computing

Nowadays, distributed computing is everywhere. Take a look at some of its most common applications, and you’ll know exactly what we mean:

  • Scientific research and simulations. Distributed computing systems model and simulate complex scientific data in fields like healthcare and life sciences. (For example, accelerating patient diagnosis with the help of a large volume of complex images (CT scans, X-rays, and MRIs).
  • Big data processing and analytics. Big data sets call for ample storage, memory, and computational power. And that’s precisely what distributed computing brings to the table.
  • Content delivery networks. Delivering content on a global scale (social media, websites, e-commerce stores, etc.) is only possible with distributed computing.
  • Online gaming and virtual environments. Are you fond of massively multiplayer online games (MMOs) and virtual reality (VR) avatars? Well, you have distributed computing to thank for them.
  • Internet of Things (IoT) and smart devices. At its very core, IoT is a distributed system. It relies on a mixture of physical access points and internet services to transform any devices into smart devices that can communicate with each other.

Future Trends in Distributed Computing

Given the flexibility and usability of distributed computing, data scientists and programmers are constantly trying to advance this revolutionary technology. Check out some of the most promising trends in distributed computing:

  • Edge computing and fog computing – Overcoming latency challenges
  • Serverless computing and Function-as-a-Service (FaaS) – Providing only the necessary amount of service on demand
  • Blockchain – Connecting computing resources of cryptocurrency miners worldwide
  • Artificial intelligence and machine learning – Improving the speed and accuracy in training models and processing data
  • Quantum computing and distributed systems – Scaling up quantum computers

Distributed Computing Is Paving the Way Forward

The ability to scale up computational processes opens up a world of possibilities for data scientists, programmers, and entrepreneurs worldwide. That’s why current challenges and obstacles to distributed computing aren’t particularly worrisome. With a little more research, the trustworthiness of distributed systems won’t be questioned anymore.

Related posts

Master the AI Era: Key Skills for Success
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 24, 2025 6 min read

The world is rapidly changing. New technologies such as artificial intelligence (AI) are transforming our lives and work, redefining the definition of “essential office skills.”

So what essential skills do today’s workers need to thrive in a business world undergoing a major digital transformation? It’s a question that Alan Lerner, director at Toptal and lecturer at the Open Institute of Technology (OPIT), addressed in his recent online masterclass.

In a broad overview of the new office landscape, Lerner shares the essential skills leaders need to manage – including artificial intelligence – to keep abreast of trends.

Here are eight essential capabilities business leaders in the AI era need, according to Lerner, which he also detailed in OPIT’s recent Master’s in Digital Business and Innovation webinar.

An Adapting Professional Environment

Lerner started his discussion by quoting naturalist Charles Darwin.

“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change.”

The quote serves to highlight the level of change that we are currently seeing in the professional world, said Lerner.

According to the World Economic Forum’s The Future of Jobs Report 2025, over the next five years 22% of the labor market will be affected by structural change – including job creation and destruction – and much of that change will be enabled by new technologies such as AI and robotics. They expect the displacement of 92 million existing jobs and the creation of 170 million new jobs by 2030.

While there will be significant growth in frontline jobs – such as delivery drivers, construction workers, and care workers – the fastest-growing jobs will be tech-related roles, including big data specialists, FinTech engineers, and AI and machine learning specialists, while the greatest decline will be in clerical and secretarial roles. The report also predicts that most workers can anticipate that 39% of their existing skill set will be transformed or outdated in five years.

Lerner also highlighted key findings in the Accenture Life Trends 2025 Report, which explores behaviors and attitudes related to business, technology, and social shifts. The report noted five key trends:

  • Cost of Hesitation – People are becoming more wary of the information they receive online.
  • The Parent Trap – Parents and governments are increasingly concerned with helping the younger generation shape a safe relationship with digital technology.
  • Impatience Economy – People are looking for quick solutions over traditional methods to achieve their health and financial goals.
  • The Dignity of Work – Employees desire to feel inspired, to be entrusted with agency, and to achieve a work-life balance.
  • Social Rewilding – People seek to disconnect and focus on satisfying activities and meaningful interactions.

These are consumer and employee demands representing opportunities for change in the modern business landscape.

Key Capabilities for the AI Era

Businesses are using a variety of strategies to adapt, though not always strategically. According to McClean & Company’s HR Trends Report 2025, 42% of respondents said they are currently implementing AI solutions, but only 7% have a documented AI implementation strategy.

This approach reflects the newness of the technology, with many still unsure of the best way to leverage AI, but also feeling the pressure to adopt and adapt, experiment, and fail forward.

So, what skills do leaders need to lead in an environment with both transformation and uncertainty? Lerner highlighted eight essential capabilities, independent of technology.

Capability 1: Manage Complexity

Leaders need to be able to solve problems and make decisions under fast-changing conditions. This requires:

  • Being able to look at and understand organizations as complex social-technical systems
  • Keeping a continuous eye on change and adopting an “outside-in” vision of their organization
  • Moving fast and fixing things faster
  • Embracing digital literacy and technological capabilities

Capability 2: Leverage Networks

Leaders need to develop networks systematically to achieve organizational goals because it is no longer possible to work within silos. Leaders should:

  • Use networks to gain insights into complex problems
  • Create networks to enhance influence
  • Treat networks as mutually rewarding relationships
  • Develop a robust profile that can be adapted for different networks

Capability 3: Think and Act “Global”

Leaders should benchmark using global best practices but adapt them to local challenges and the needs of their organization. This requires:

  • Identifying what great companies are achieving and seeking data to understand underlying patterns
  • Developing perspectives to craft global strategies that incorporate regional and local tactics
  • Learning how to navigate culturally complex and nuanced business solutions

Capability 4: Inspire Engagement

Leaders must foster a culture that creates meaningful connections between employees and organizational values. This means:

  • Understanding individual values and needs
  • Shaping projects and assignments to meet different values and needs
  • Fostering an inclusive work environment with plenty of psychological safety
  • Developing meaningful conversations and both providing and receiving feedback
  • Sharing advice and asking for help when needed

Capability 5: Communicate Strategically

Leaders should develop crisp, clear messaging adaptable to various audiences and focus on active listening. Achieving this involves:

  • Creating their communication style and finding their unique voice
  • Developing storytelling skills
  • Utilizing a data-centric and fact-based approach to communication
  • Continual practice and asking for feedback

Capability 6: Foster Innovation

Leaders should collaborate with experts to build a reliable innovation process and a creative environment where new ideas thrive. Essential steps include:

  • Developing or enhancing structures that best support innovation
  • Documenting and refreshing innovation systems, processes, and practices
  • Encouraging people to discover new ways of working
  • Aiming to think outside the box and develop a growth mindset
  • Trying to be as “tech-savvy” as possible

Capability 7: Cultivate Learning Agility

Leaders should always seek out and learn new things and not be afraid to ask questions. This involves:

  • Adopting a lifelong learning mindset
  • Seeking opportunities to discover new approaches and skills
  • Enhancing problem-solving skills
  • Reviewing both successful and unsuccessful case studies

Capability 8: Develop Personal Adaptability

Leaders should be focused on being effective when facing uncertainty and adapting to change with vigor. Therefore, leaders should:

  • Be flexible about their approach to facing challenging situations
  • Build resilience by effectively managing stress, time, and energy
  • Recognize when past approaches do not work in current situations
  • Learn from and capitalize on mistakes

Curiosity and Adaptability

With the eight key capabilities in mind, Lerner suggests that curiosity and adaptability are the key skills that everyone needs to thrive in the current environment.

He also advocates for lifelong learning and teaches several key courses at OPIT which can lead to a Bachelor’s Degree in Digital Business.

Read the article
Lessons From History: How Fraud Tactics From the 18th Century Still Impact Us Today
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 17, 2025 6 min read

Many people treat cyber threats and digital fraud as a new phenomenon that only appeared with the development of the internet. But fraud – intentional deceit to manipulate a victim – has always existed; it is just the tools that have changed.

In a recent online course for the Open Institute of Technology (OPIT), AI & Cybersecurity Strategist Tom Vazdar, chair of OPIT’s Master’s Degree in Enterprise Cybersecurity, demonstrated the striking parallels between some of the famous fraud cases of the 18th century and modern cyber fraud.

Why does the history of fraud matter?

Primarily because the psychology and fraud tactics have remained consistent over the centuries. While cybersecurity is a tool that can combat modern digital fraud threats, no defense strategy will be successful without addressing the underlying psychology and tactics.

These historical fraud cases Vazdar addresses offer valuable lessons for current and future cybersecurity approaches.

The South Sea Bubble (1720)

The South Sea Bubble was one of the first stock market crashes in history. While it may not have had the same far-reaching consequences as the Black Thursday crash of 1929 or the 2008 crash, it shows how fraud can lead to stock market bubbles and advantages for insider traders.

The South Sea Company was a British company that emerged to monopolize trade with the Spanish colonies in South America. The company promised investors significant returns but provided no evidence of its activities. This saw the stock prices grow from £100 to £1,000 in a matter of months, then crash when the company’s weakness was revealed.

Many people lost a significant amount of money, including Sir Isaac Newton, prompting the statement, “I can calculate the movement of the stars, but not the madness of men.

Investors often have no way to verify a company’s claim, making stock markets a fertile ground for manipulation and fraud since their inception. When one party has more information than another, it creates the opportunity for fraud. This can be seen today in Ponzi schemes, tech stock bubbles driven by manipulative media coverage, and initial cryptocurrency offerings.

The Diamond Necklace Affair (1784-1785)

The Diamond Necklace Affair is an infamous incident of fraud linked to the French Revolution. An early example of identity theft, it also demonstrates that the harm caused by such a crime can go far beyond financial.

A French aristocrat named Jeanne de la Mont convinced Cardinal Louis-René-Édouard, Prince de Rohan into thinking that he was buying a valuable diamond necklace on behalf of Queen Marie Antoinette. De la Mont forged letters from the queen and even had someone impersonate her for a meeting, all while convincing the cardinal of the need for secrecy. The cardinal overlooked several questionable issues because he believed he would gain political benefit from the transaction.

When the scheme finally exposed, it damaged Marie Antoinette’s reputation, despite her lack of involvement in the deception. The story reinforced the public perception of her as a frivolous aristocrat living off the labor of the people. This contributed to the overall resentment of the aristocracy that erupted in the French Revolution and likely played a role in Marie Antoinette’s death. Had she not been seen as frivolous, she might have been allowed to live after her husband’s death.

Today, impersonation scams work in similar ways. For example, a fraudster might forge communication from a CEO to convince employees to release funds or take some other action. The risk of this is only increasing with improved technology such as deepfakes.

Spanish Prisoner Scam (Late 1700s)

The Spanish Prisoner Scam will probably sound very familiar to anyone who received a “Nigerian prince” email in the early 2000s.

Victims received letters from a “wealthy Spanish prisoner” who needed their help to access his fortune. If they sent money to facilitate his escape and travel, he would reward them with greater riches when he regained his fortune. This was only one of many similar scams in the 1700s, often involving follow-up requests for additional payments before the scammer disappeared.

While the “Nigerian prince” scam received enough publicity that it became almost unbelievable that people could fall for it, if done well, these can be psychologically sophisticated scams. The stories play on people’s emotions, get them invested in the person, and enamor them with the idea of being someone helpful and important. A compelling narrative can diminish someone’s critical thinking and cause them to ignore red flags.

Today, these scams are more likely to take the form of inheritance fraud or a lottery scam, where, again, a person has to pay an advance fee to unlock a much bigger reward, playing on the common desire for easy money.

Evolution of Fraud

These examples make it clear that fraud is nothing new and that effective tactics have thrived over the centuries. Technology simply opens up new opportunities for fraud.

While 18th-century scammers had to rely on face-to-face contact and fraudulent letters, in the 19th century they could leverage the telegraph for “urgent” communication and newspaper ads to reach broader audiences. In the 20th century, there were telephones and television ads. Today, there are email, social media, and deepfakes, with new technologies emerging daily.

Rather than quack doctors offering miracle cures, we see online health scams selling diet pills and antiaging products. Rather than impersonating real people, we see fake social media accounts and catfishing. Fraudulent sites convince people to enter their bank details rather than asking them to send money. The anonymity of the digital world protects perpetrators.

But despite the technology changing, the underlying psychology that makes scams successful remains the same:

  • Greed and the desire for easy money
  • Fear of missing out and the belief that a response is urgent
  • Social pressure to “keep up with the Joneses” and the “Bandwagon Effect”
  • Trust in authority without verification

Therefore, the best protection against scams remains the same: critical thinking and skepticism, not technology.

Responding to Fraud

In conclusion, Vazdar shared a series of steps that people should take to protect themselves against fraud:

  • Think before you click.
  • Beware of secrecy and urgency.
  • Verify identities.
  • If it seems too good to be true, be skeptical.
  • Use available security tools.

Those security tools have changed over time and will continue to change, but the underlying steps for identifying and preventing fraud remain the same.

For more insights from Vazdar and other experts in the field, consider enrolling in highly specialized and comprehensive programs like OPIT’s Enterprise Security Master’s program.

Read the article