

It can often feel like a computer has a “brain,” especially given modern machines’ abilities to run complex calculations and handle instructions. But all of those machines need people behind them to program algorithms and help them to learn based on explicit instructions. That’s where machine learning comes in.
This branch of artificial intelligence brings a machine’s “brain” closer to the real thing than ever before. It’s all about teaching the machine how to do more than simply execute, as machine learning is all about making a machine “think” (based on instructions and algorithms) so it can improve over time. That ability to “think” is crucial in modern business because it gives companies the ability to analyze patterns – both operational and consumer-based – enabling them to make smarter decisions.
But these businesses need people who understand how to create machine learning models. That’s where you come in. With the right machine learning tutorial under your belt, you set yourself up for a career in a field that has only just started to show glimpses of its potential.
The Best Machine Learning Tutorials
Finding the best online tutorial for machine learning isn’t easy given the sheer volume of options available. Analyzing each one based on what it teaches (and how useful it will be to your career) takes time, though you can save yourself that time by checking out the three tutorials highlighted here.
Tutorial 1 – Intro to Machine Learning (Kaggle)
As tempting as it may be to run before you can walk, you need an introduction to the basic concepts of machine learning prior to focusing on more practical applications. Enter Kaggle’s machine learning tutorial. This seven-lesson course takes about three hours of self-guided learning to complete and will leave you with a solid grounding in machine learning that you can take into more industry-focused courses.
The majority of the seven lessons – barring the first – is split into two parts. First comes a tutorial where you’ll learn about the concepts that the lesson introduces, with the second part being an exercise that tests your new skills. Along the way, you’ll learn the basics of how machine learning models work and why you need them to explore large datasets. Other lessons focus on building and validating a model, with the later lessons introducing more complex algorithms, such as random forests, and giving you a chance to test your skills in competitions.
Though this is a beginner-focused tutorial, you’ll need a solid understanding of Python before making a start. Without experience in this programming language, you’ll feel like you’re truly lost in a random forest before you ever get to learn what that term actually means. On the plus side, the tutorial has an active discussion community (which includes the course instructor Dan Becker) that can help you along and point you in the direction of other courses that supplement this one.
Tutorial 2 – Making Developers Awesome at Machine Learning (Machine Learning Mastery)
This machine learning tutorial is less a structured course and more a series of articles and step-by-step instructional lessons that take you from the foundations of machine learning to more advanced concepts. That method of breaking the course into multiple stages is ideal for students of all experience levels. Complete beginners can start with the “Foundations” level and work their way up while those with more experience can dip into specific subjects that give them trouble or will build on their existing skills.
The course is split into four sections – Foundations, Beginner, Intermediate, and Advanced. At the Foundations level, you’ll learn about the statistical concepts and models that underpin machine learning, giving you a solid basis to move into the Python programming taught in the Beginner section. Once you have a grasp of Python, the Intermediate section teaches you about deep learning and how to code machine learning algorithms. By the time you hit the Advanced stage, you’ll be working on complex subjects like computer vision and natural language processing.
With its less structured nature, this tutorial is great for people who want to dip in and out and those who need to hone in on a specific aspect of machine learning. It’s also a good choice for beginners because it covers practically everything you’ll need to know. Unfortunately, the lack of structure means you don’t get an official certification from the tutorial. Some students may also not like the “hub” nature of the tutorial, as it links you to tons of different web pages that can lead to confusion over time.
Tutorial 3 – Machine Learning Crash Course With TensorFlow APIs (Google)
If you already have a mathematical foundation (as well as some basic understanding of machine learning), Google’s tutorial helps you take your skills to the next level. You’ll need to understand algebra, statistics, and basic trigonometry, in addition to having some understanding of Python, to get started. But assuming you have all of that, this machine learning tutorial exposes you to real-world examples of the technology in action.
It’s a 25-lesson course that contains 30 exercises covering topics like model development and testing, data representation, and building neural networks. According to Google, it takes about 15 hours of self-guided study to complete, though your time may vary depending on how much you already know before you start the course.
The biggest advantage of this tutorial is the name attached to it. Google is a major player in the tech industry and the presence of its name on your CV instantly shows employers that you know your stuff. The course material is also delivered by lecturers who work at or for Google, allowing them to bring their real-world experiences into their lessons. On the downside, the tutorial’s prerequisites make it unsuitable for beginners, though Google does offer more basic courses (both in machine learning and Python) to help you build the required foundation.
Factors to Consider When Choosing a Machine Learning Tutorial
The three options presented above all make a solid case for the best online tutorial for machine learning, though each offers something different based on your current skill level. To make the best choice between the three (and any other tutorials you find) you should consider these factors before committing yourself.
Your Current Skill Level
Diving into neural networks before you even know how machine learning works is like trying to row upstream without a paddle. You’re going to get stuck in rough waters and the end result won’t be what you want it to be. Be honest with yourself about your current skill level to ensure you don’t start a tutorial that’s too difficult (or too simple) for your abilities.
Programming Languages
There’s no getting away from the fact that you’ll need to feel comfortable with programming before taking a machine learning tutorial. Specifically, you’re likely to need some knowledge of Python, though how much depends on the course you take. Other languages can help, at least in the sense of ensuring you’re familiar with programming, but you need to check the language the course uses before starting.
Specific Topics
Though the basic idea of building a machine “brain” is simple enough to understand, the machine learning waters run deep. There are tons of topics and potential specializations you could study, and not all are useful for your intended career path. Check what the course covers and ensure those topics align with what you hope to achieve once you’ve completed the tutorial.
Time Commitment
If a tutorial takes an hour or two to complete, you don’t really need to worry about how you’ll fit it around your other commitments. But if it takes you down a machine learning rabbit hole (i.e., the Machine Learning Mastery Course), you need to get serious with scheduling. Figure out how much time you can commit to your course per week and choose a tutorial that fits around your commitments.
The Cost
On the plus side, many machine learning tutorials are available free of charge. But if you’re looking for more official certification, or you want to take a more formal course, you’ll usually have to pay for the privilege. Weigh up the course’s cost against the benefit you get out of the backend.
Tips for Getting the Most Out of a Machine Learning Tutorial
Anybody can start a machine learning tutorial, but only the truly committed will complete and actually get the most out of the materials. Follow these tips to ensure you’re spending your time wisely on the tutorial you choose:
- Set clear goals from the outset that define what you want to achieve with the tutorial and where it’s supposed to lead you.
- Dedicate time to learning every week because regularity is the key to making the information you absorb stick in your mind.
- Engage with any communities related to your tutorial to learn from your peers and ask questions about the tutorial’s content.
- Apply what you learn to real-world problems, either via the course itself or by searching for examples of what you’ve learned being put into action.
- Update your knowledge and skills regularly with further tutorials because what you learn today may be out of date tomorrow.
Find the Best Online Tutorial for Machine Learning for You
There is no single “best” machine learning tutorial on the web because each approaches the subject differently. Some assume you have no knowledge at all and will start with basics before moving you into deeper subjects. Others require you to understand the computing concepts (mathematical and programmatical) that underpin machine learning before you can get started. Understand what the course offers, and what it needs from you, before you get started.
Regardless of your choice, getting started is the most important thing you can do. Once you’ve chosen a tutorial, commit yourself to it fully to take your first step (or potentially a giant leap) into a career that’s only going to grow as machine learning models become more common in business.
Related posts

During the Open Institute of Technology’s (OPIT’s) 2025 Graduation Day, we conducted interviews with many recent graduates to understand why they chose OPIT, how they felt about the course, and what advice they might give to others considering studying at OPIT.
Karina is an experienced FinTech professional who is an experienced integration manager, ERP specialist, and business analyst. She was interested in learning AI applications to expand her career possibilities, and she chose OPIT’s MSc in Applied Data Science & AI.
In the interview, Karina discussed why she chose OPIT over other courses of study, the main challenges she faced when completing the course while working full-time, and the kind of support she received from OPIT and other students.
Why Study at OPIT?
Karina explained that she was interested in enhancing her AI skills to take advantage of a major emerging technology in the FinTech field. She said that she was looking for a course that was affordable and that she could manage alongside her current demanding job. Karina noted that she did not have the luxury to take time off to become a full-time student.
She was principally looking at courses in the United States and the United Kingdom. She found that comprehensive courses were expensive, costing upwards of $50,000, and did not always offer flexible study options. Meanwhile, flexible courses that she could complete while working offered excellent individual modules, but didn’t always add up to a coherent whole. This was something that set OPIT apart.
Karina admits that she was initially skeptical when she encountered OPIT because, at the time, it was still very new. OPIT only started offering courses in September 2023, so 2025 was the first cohort of graduates.
Nevertheless, Karina was interested in OPIT’s affordable study options and the flexibility of fully remote learning and part-time options. She said that when she looked into the course, she realized that it aligned very closely with what she was looking for.
In particular, Karina noted that she was always wary of further study because of the level of mathematics required in most computer science courses. She appreciated that OPIT’s course focused on understanding the underlying core principles and the potential applications, rather than the fine programming and mathematical details. This made the course more applicable to her professional life.
OPIT’s MSc in Applied Data Science & AI
The course Karina took was OPIT’s MSc in Applied Data Science & AI. It is a three- to four-term course (13 weeks), which can take between one and two years to complete, depending on the pace you choose and whether you choose the 90 or 120 ECTS option. As well as part-time, there are also regular and fast-track options.
The course is fully online and completed in English, with an accessible tuition fee of €2,250 per term, which is €6,750 for the 90 ECTS course and €9,000 for the 120 ECTS course. Payment plans are available as are scholarships, and discounts are available if you pay the full amount upfront.
It matches foundational tech modules with business application modules to build a strong foundation. It then ends with a term-long research project culminating in a thesis. Internships with industry partners are encouraged and facilitated by OPIT, or professionals can work on projects within their own companies.
Entry requirements include a bachelor’s degree or equivalency in any field, including non-tech fields, and English proficiency to a B2 level.
Faculty members include Pierluigi Casale, a former Data Science and AI Innovation Officer for the European Parliament and Principal Data Scientist at TomTom; Paco Awissi, former VP at PSL Group and an instructor at McGill University; and Marzi Bakhshandeh, a Senior Product Manager at ING.
Challenges and Support
Karina shared that her biggest challenge while studying at OPIT was time management and juggling the heavy learning schedule with her hectic job. She admitted that when balancing the two, there were times when her social life suffered, but it was doable. The key to her success was organization, time management, and the support of the rest of the cohort.
According to Karina, the cohort WhatsApp group was often a lifeline that helped keep her focused and optimistic during challenging times. Sharing challenges with others in the same boat and seeing the example of her peers often helped.
The OPIT Cohort
OPIT has a wide and varied cohort with over 300 students studying remotely from 78 countries around the world. Around 80% of OPIT’s students are already working professionals who are currently employed at top companies in a variety of industries. This includes global tech firms such as Accenture, Cisco, and Broadcom, FinTech companies like UBS, PwC, Deloitte, and the First Bank of Nigeria, and innovative startups and enterprises like Dynatrace, Leonardo, and the Pharo Foundation.
Study Methods
This cohort meets in OPIT’s online classrooms, powered by the Canvas Learning Management System (LMS). One of the world’s leading teaching and learning software, it acts as a virtual hub for all of OPIT’s academic activities, including live lectures and discussion boards. OPIT also uses the same portal to conduct continuous assessments and prepare students before final exams.
If you want to collaborate with other students, there is a collaboration tab where you can set up workrooms, and also an official Slack platform. Students tend to use WhatsApp for other informal communications.
If students need additional support, they can book an appointment with the course coordinator through Canvas to get advice on managing their workload and balancing their commitments. Students also get access to experienced career advisor Mike McCulloch, who can provide expert guidance.
A Supportive Environment
These services and resources create a supportive environment for OPIT students, which Karina says helped her throughout her course of study. Karina suggests organization and leaning into help from the community are the best ways to succeed when studying with OPIT.

In April 2025, Professor Francesco Derchi from the Open Institute of Technology (OPIT) and Chair of OPIT’s Digital Business programs entered the online classroom to talk about the current state of the Metaverse and what companies can do to engage with this technological shift. As an expert in digital marketing, he is well-placed to talk about how brands can leverage the Metaverse to further company goals.
Current State of the Metaverse
Francesco started by exploring what the Metaverse is and the rocky history of its development. Although many associate the term Metaverse with Mark Zuckerberg’s 2021 announcement of Meta’s pivot toward a virtual immersive experience co-created by users, the concept actually existed long before. In his 1992 novel Snow Crash, author Neal Stephenson described a very similar concept, with people using avatars to seamlessly step out of the real world and into a highly connected virtual world.
Zuckerberg’s announcement was not even the start of real Metaverse-like experiences. Released in 2003, Second Life is a virtual world in which multiple users come together and engage through avatars. Participation in Second Life peaked at about one million active users in 2007. Similarly, Minecraft, released in 2011, is a virtual world where users can explore and build, and it offers multiplayer options.
What set Zuckerberg’s vision apart from these earlier iterations is that he imagined a much broader virtual world, with almost limitless creation and interaction possibilities. However, this proved much more difficult in practice.
Both Meta and Microsoft started investing significantly in the Metaverse at around the same time, with Microsoft completing its acquisition of Activision Blizzard – a gaming company that creates virtual world games such as World of Warcraft – in 2023 and working with Epic Games to bring Fortnite to their Xbox cloud gaming platform.
But limited adoption of new Metaverse technology saw both Meta and Microsoft announce major layoffs and cutbacks on their Metaverse investments.
Open Garden Metaverse
One of the major issues for the big Metaverse vision is that it requires an open-garden Metaverse. Matthew Ball defined this kind of Metaverse in his 2022 book:
“A massively scaled and interoperable network of real-time rendered 3D virtual worlds that can be experienced synchronously and persistently by an effectively unlimited number of users with an individual sense of presence, and with continuity of data, such as identity, history, entitlements, objects, communication, and payments.”
This vision requires an open Metaverse, a virtual world beyond any single company’s walled garden that allows interaction across platforms. With the current technology and state of the market, this is believed to be at least 10 years away.
With that in mind, Zuckerberg and Meta have pivoted away from expanding their Metaverse towards delivering devices such as AI glasses with augmented reality capabilities and virtual reality headsets.
Nevertheless, the Metaverse is still expanding today, but within walled garden contexts. Francesco pointed to Pokémon Go and Roblox as examples of Metaverse-esque words with enormous engagement and popularity.
Brands Engaging with the Metaverse: Nike Case Study
What does that mean for brands? Should they ignore the Metaverse until it becomes a more realistic proposition, or should they be establishing their Meta presence now?
Francesco used Nike’s successful approach to Meta engagement to show how brands can leverage the Metaverse today.
He pointed out that this was a strategic move from Nike to protect their brand. As a cultural phenomenon, people will naturally bring their affinity with Nike into the virtual space with them. If Nike doesn’t constantly monitor that presence, they can lose control of it. Rather than see this as a threat, Nike identified it as an opportunity. As people engage more online, their virtual appearance can become even more important than their physical appearance. Therefore, there is a space for Nike to occupy in this virtual world as a cultural icon.
Nike chose an ad hoc approach, going to users where they are and providing experiences within popular existing platforms.
As more than 1.5 million people play Fortnite every day, Nike started there, first selling a variety of virtual shoes that users can buy to kit out their avatars.
Roblox similarly has around 380 million monthly active users, so Nike entered the space and created NIKELAND, a purpose-built virtual area that offers a unique brand experience in the virtual world. For example, during NBA All-Star Week, LeBron James visited NIKELAND, where he coached and engaged with players. During the FIFA World Cup, NIKELAND let users claim two free soccer jerseys to show support for their favorite teams. According to statistics published at the end of 2023, in less than two years, NIKELAND had more than 34.9 million visitors, with over 13.4 billion hours of engagement and $185 million in NFT (non-fungible tokens or unique digital assets) sales.
Final Thoughts
Francesco concluded by discussing that while Nike has been successful in the Metaverse, this is not necessarily a success that will be simple for smaller brands to replicate. Nike was successful in the virtual world because they are a cultural phenomenon, and the Metaverse is a combination of technology and culture.
Therefore, brands today must decide how to engage with the current state of the Metaverse and prepare for its potential future expansion. Because existing Metaverses are walled gardens, brands also need to decide which Metaverses warrant investment or whether it is worth creating their own dedicated platforms. This all comes down to an appetite for risk.
Facing these types of challenges comes down to understanding the business potential of new technologies and making decisions based on risk and opportunity. OPIT’s BSc in Digital Business and MSc in Digital Business and Innovation help develop these skills, with Francesco also serving as program chair.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: